Skip to main content

Mechanisms of Tumor Cell Lysis by Natural Killer Cells

  • Chapter
Mechanisms of Cell-Mediated Cytotoxicity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 146))

Abstract

Immune reactivity against malignant cells is well-documented for a number of lymphoid cell types (1). The foremost features of anti-timor immune effector cells appears to be their capacity to recognize and subsequently kill tumor cells. Nevertheless, the mechanism(s) by which effector cells of the immune response mediate tumor cell lysis is largely unknown. The lack of precise knowledge concerning lytic pathways is evident for well studied immune killer cells, such as cytotoxic T Ijrmphocytes, as well as for effector cells that have only recently received intense experimental scrutiny, such as natural killer (NK) cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Herberman, R.B. Immunologic defenses against cancer. In, The pathophysiology of human immunologic disorders, ed. J. J. Twomey, Urban & Schwarzenberg. In Press.

    Google Scholar 

  2. Herberman, R.B. Possible roles of natural killer (NK) cells. In, Immunobiology of transplantation, cancer, and pregnancy, ed. P. K. Ray, Plenum Press. In Press.

    Google Scholar 

  3. Berke G. Interaction of cytotoxic T lymphocytes and target cells. Prog. Allergy 27:69–133, 1981.

    Google Scholar 

  4. Golstein, P., and Smith, E.T. 1977. Mechanism of T-cell mediated cytolysis: the lethal hit stage. Contemp. Top. Immunobiol. 7: 273–300.

    Article  CAS  Google Scholar 

  5. Henney, C.S. 1977. T-cell mediated cytolysis: an overview of some current issues. Contemp. Top. Immunobiol. 2:245–272.

    Article  Google Scholar 

  6. Martz, E. 1977. Mechanism of specific tumor-cell lysis by alloiHimune T lymphocytes. Resolution and characterization of discrete steps in the cellular interaction. Contemp. Top. Immunobiol. 7:301–361.

    Article  PubMed  CAS  Google Scholar 

  7. Goldfarb, R.H., and Herberman R.B. Characteristics of natural killer cells and possible mechansims for their cytotoxic activity. In Ad van. Inflamm. Res., ed. G. Weissman, Raven Press. In Press.

    Google Scholar 

  8. Roder, J.C., Kiessling, R., Bibberfeld, P., and Andersson, B. 1978. Traget-effector interaction in the natural killer (NK) cell system. II. The isolation of NK cells and studies on the mechanism of killing. J. Immunol. 121:2509–2517.

    PubMed  CAS  Google Scholar 

  9. Roder, J.C., Rosen, A., Fenyo, E.M., and Troy, F.A. 1979. Target-effector interaction in the natural killer cell system: isolation of target structures. Proc. Natl. Acad. Sci. USA, 76:1405–1409.

    Article  PubMed  CAS  Google Scholar 

  10. Timonen, T., Saksela, E., Ranki, A., and Hayry, P. 1979. Fractionation, morphological and functional characterization of effector cells responsible for human natural killer activity against cell-line targets. Cell. Immunol. 48;133–148.

    Article  PubMed  CAS  Google Scholar 

  11. Timonen, T., Ortaldo, J.R., and Herberman, R.B. 1981. Characteristics of human large granular lymphocytes and relationship to natural killer and K cells. J. Exp. Med., 153:569- 582.

    Article  PubMed  CAS  Google Scholar 

  12. Goldfarb, R.H., and Herberman, R.B. 1981. Natural killer cell reactivity: Regulatory interactions among phorbol ester, interferon, cholera toxin, and retinoic acid. J. Immunol. 126:2129–2135.

    PubMed  CAS  Google Scholar 

  13. Wright, S.C., and Bonavida, B. 1981. Selective lysis of NK- sensitive target cells by a soluble mediator released from murine spleen cells and human peripheral blood lymphocytes. J. Immunol., 126:1516–1521.

    PubMed  CAS  Google Scholar 

  14. Goldfarb, R.H. Proteases in tumor invasion and metastasis. In The biology of metastatis., ed. L. A. Liotta and I. R. Hart. In Press.

    Google Scholar 

  15. Ferluga, J., Asherson, G.L., and Becker, E.L. 1972. The effect of organophosphorous inhibitors, p-nitrophenol, and cytochalasin B on cytotoxic killing of tumor cells by immune spleen cells and the effects of shaking. Immunol. 23:577–590.

    CAS  Google Scholar 

  16. Redelman, D., and Hudig, D. 1980. The mechanism of cell mediated cytotoxicity. I. Killing of murine cytotoxic T lymphocytes requires cell surface thiols and activated proteases. J. Immunol., 124:870–878.

    PubMed  CAS  Google Scholar 

  17. Hatcher, V.B., Oberman, M.S., Lazarus, G.S., and Grayzel, A.I. 1978. A cytotoxic proteinase isolated from human lymphocytes. J. Immunol. 120:665–670.

    PubMed  CAS  Google Scholar 

  18. Ferluga, J., and Allison, A.C. 1974. On the mechanism by which T lymphocytes exert cytotoxic effects. Nature, 250: 673–675.

    Article  PubMed  CAS  Google Scholar 

  19. Tokes, Z.A. 1976. Estimation of cell surface associated protease activity and its application to lymphocytes. J. Supramolec. Struc., 4:507–513.

    Article  CAS  Google Scholar 

  20. Kedar, E., Ortiz de Landazuri, M., and Fahey, J.L. 1974. Enzymatic enhancement of cell-mediated cytotoxicity and antibody-dependent cell cytotoxicity. J. Immunol., 112: 26–36.

    PubMed  CAS  Google Scholar 

  21. Matter, A. 1975. A study of proteolysis as a possible mechanism for T cell mediated target cell lysis. Scand. J. Immunol., 4:349–356.

    CAS  Google Scholar 

  22. Adams, D.O. 1980. Effector mechanisms of cytolytically activated macrophages: I. Secretion of neutral serine proteases and effect of protease inhibitors. J. Immunol., 124: 286–292.

    PubMed  CAS  Google Scholar 

  23. Adams, D.O., Kuo-Jang, J., Farb, R., and Pizzo, S.V. 1980. Effector mechanisms of cytolytically activated macrophages. II, Secretion of a cytolytic factor by activated macrophages and its relationship to secreted neutral proteases. J. Immunol., 124:293–300.

    PubMed  CAS  Google Scholar 

  24. Piessens, W.F., and Sharma, S.D. 1980. Tumor cell killing by macrophages activated in vitro with lymphocyte mediators. 5. Role of proteases, inhibitors, and substrates. Cellular Immunol., 56:286–291.

    Article  CAS  Google Scholar 

  25. Adams, D.O., and Marino, P.A. 1981. Evidence for a multi- step mechanism of cytolysis by BCG-activat;ed macrophages: The interrelationship between the capacity for cytolysis, target binding, and secretion of a cytolytic factor. J. Immunol., 126: 981–987.

    PubMed  CAS  Google Scholar 

  26. Unkeless, J.C., Gordon, S., and Reich, E. 1974. Secretion of plasminogen activator by stimulated macrophages. J. Exp. Med., 139:834–850.

    Article  PubMed  CAS  Google Scholar 

  27. Chapman, H.A., Vavrin, Z., and Hibbs, J.B. 1979. Modulation of plasminogen activator secretion by activated iMicrophages: Influence of serum factors and correlation with tumoricidal potential. Proc. Natl. Acad. Sci. USA, 76:3899–3903.

    Article  PubMed  CAS  Google Scholar 

  28. Trinchieri, G., and DeMarchi, M. 1976. Antibody dependent cell mediated cytotoxicity in humans. III. Effect of protease inhibitors and shaking. J. Immunol., 116:885–891.

    PubMed  CAS  Google Scholar 

  29. Herberman, R.B., editor. 1980. Natural Cell Mediated Immunity Against Tumors. Academic Press, New York.

    Google Scholar 

  30. Kishimoto, T., Kikutani, H., Nishizawa, Y., Sakaguchi, N., and Yamamura, Y. 1979. Involvement of anti Ig-activated serine protease in the generation of cytoplasmic factors that are responsible for the transmission of Ig-receptor mediated signals. J. Immunol., 123:1504–1510.

    PubMed  CAS  Google Scholar 

  31. Hudig, D., Haverty, T., Fucher, C., Redelman, D., and Mendelsohn, J. 1981. Inhibition of human natural cytotoxicity by macromolecular antiproteases. J. Immunol., 126:1569–1574.

    PubMed  CAS  Google Scholar 

  32. Hudig, D., Redelman, D., and Mendelsohn, J. 1980. Inhibition of human natural cytotoxicity by proteinase substrates. Fed. Proc., 469.

    Google Scholar 

  33. Lavie, G., Weiss, H., Pick, A.I., and Franklin, E.C. 1980. The role of surface associated proteases in lymphocyte spontaneous cytolytic activity. Fourth Cong. Immunol. Abstracts, 11, 4. 30.

    Google Scholar 

  34. Haliotis, R., Roder, J., Klein, M., Ortaldo, J., Fauci, A., and Herberman, R.B. 1980. Chediak-Higashi gene in humans. I. Impairment of natural-killer function. J. Exp. Med., 151:1039–1048.

    Article  PubMed  CAS  Google Scholar 

  35. Roder, J.C., and Duwe, A.K. 1979. The beige imitation in the mouse selectively impairs natural killer cell function. Nature, 278:451–453.

    Article  PubMed  CAS  Google Scholar 

  36. Vassali, J., Granelli-Piperno, A., Griscelli, C., and Reich, E. 1978. Specific protease deficiency in polymorphonuclear leukocytes of Chediak-Higashi syndrome and beige mice. J. Exp. Med., 147:1285–1290.

    Article  Google Scholar 

  37. Goldfarb, R.H., and Quigley, J.P. 1978. Production of plasminogen activator by chick embryo fibroblasts: synergistic effect of Rous sarcoma virus transformation and treatment with the tumor promoter phorbol-myristate-acetate. Cancer Res., 38:4601–4608.

    PubMed  CAS  Google Scholar 

  38. Maillard, J., Toullet, F., Favreau, C., and Chadenier, F. 1978. Stimulated lymph node lymphocytes release a plasminogen activator. Ann. Immunol. Inst. Pasteur., 129;499–502.

    Google Scholar 

  39. Maillard, J.L., and Favreau, C. 1981. Plasminogen activation by normal B lymphocytes, a function associated with the cell membrane. J. Immunol., 126;1126–1130.

    PubMed  CAS  Google Scholar 

  40. Fulton, R.J., and Hart, D.A. 1980. Detection and partial characterization of l3nnphoid cell surface proteases. Cell. Immunol., 55:394–405.

    Article  PubMed  CAS  Google Scholar 

  41. Fulton, R.J., and Hart, D.A. 1981. Characterization of a plasma-membrane associated plasminogen activator on thymocytes. Biochim. Biophys. Acta, 642;345–364.

    Article  PubMed  CAS  Google Scholar 

  42. Goldfarb, R.H., and Quigley, J.P. 1980. Purification of plasminogen activator from Rous sarcoma virus transformed chick embryo fibroblasts treated with the tumor promoter phorbol-12-myristate-13-acetate. Biochem., 19:5463–5471.

    Article  CAS  Google Scholar 

  43. Umezawa, H., and Ayogi, T. 1977. Activities of proteinase inhibitors of microbial origin. Proteinases in mammalian cells and tissues, ed. A. Barrett, pp. 637–662, North Holland Biomedical Press.

    Google Scholar 

  44. Zimmerman, M., Quigley, J.P., Ashe, B., Dorn, C., Goldfarb, R.H., and Troll, W. 1978. Direct fluorescent assay of urokinase and plasminogen activators of normal and malignant cells; kinetics and inhibitor profiles. Proc. Natl. Acad. Sci. USA, 75:750–753.

    Article  PubMed  CAS  Google Scholar 

  45. Lane, J.T., Lo, F., and Prasad, C. 1980. Chymostatin inhibits cellular aggregation of activated human peripheral blood lymphocytes. Life Sci., 27:451–456.

    Article  PubMed  CAS  Google Scholar 

  46. Berke, G. 1977. Recent advances and questions in lympho- cytotoxicity. In, Regulatory mechanisms in lymphocyte activation, ed. D. O. Lucas, pp. 812–816, Academic Press, New York.

    Google Scholar 

  47. Frye, L.D., and Friou, G.J. 1975. Inhibition of mammalian cytotoxic cells by phosphatidylcholine and its analogue. Nature, 258:333–335.

    Article  PubMed  CAS  Google Scholar 

  48. Hoffman, T., Hirata, F., Bougnoux, P., Fraser, B.A., Goldfarb, R.H., Herberman, R.B., and Axelrod, J. 1981. Phospholipid methylation and phospholipase A2 activation in cytotoxicity by human natural killer cells. Proc. Natl. Acad. Sci. USA, 78:3839–3843.

    Article  PubMed  CAS  Google Scholar 

  49. Clark, R.A., and Klebanoff, S.J. 1975. Neutrophil-mediated tumor cell cytotoxicity: role of the peroxidase system. J. Exp. Med., 141:1442–1447.

    Article  PubMed  CAS  Google Scholar 

  50. Clark, R.A., Klebanoff, S.J., Einstein, A.B., and Fefer, A. 1978. Peroxidase-H202-halide system cytotoxic effect on mammalian tumor cells. Blood, 45:161–170.

    Google Scholar 

  51. Nathan, C.F., Bruckner, L.H., Silverstein, S.C., and Cohn, Z.A. 1979. Extracellular cytolysis by activated macrophages and granulocytes. I. Pharmacologic triggering of effector cells and the release of hydrogen peroxide. J. Exp. Med., 149:84–99.

    Article  PubMed  CAS  Google Scholar 

  52. Nathan, C.F., Bruckner, L.H., Silverstein, S.C., and Cohn, Z. 1979. Extracellular cytolysis by activated macrophages and granulocytes. II. Hydrogen peroxide as a mediator of cytotoxicity. J. Exp. Med., 149:100–113.

    Article  PubMed  CAS  Google Scholar 

  53. Nathan, C., and Cohn, Z. 1980. Role of oxygen dependent mechanisms in antibody-induced lysis of tumor cells by activated macrophages. J. Exp. Med., 152:198–208.

    Article  PubMed  CAS  Google Scholar 

  54. Nathan, C., Bruckner, L., Kaplan, G., Unkeless, J.C., and Cohn, Z. 1980. Role of activated macrophages in antibody- dependent lysis of tumor cells. J. Exp. Med., 152:183–197.

    Article  PubMed  CAS  Google Scholar 

  55. Nathan, C.F., Murray, H.W., and Cohn, Z. 1980. The Macrophage as an effector cell. N. Eng. J. Med., 303:662–626.

    Google Scholar 

  56. Granger, G.A., Hiserodt, J.C., and Ware, C.F. 1979. Cytotoxic and growth inhibitory lymphokines, ed. S. Cohn, E. Pick, and J. P. Oppenheim, pp. 141–163, Academic Press, New York.

    Google Scholar 

  57. Ballas, Z.K., and Henney, C.S. 1979. The relationship between lymphokines and cell-mediated cytotoxicity. In, Biology of the lymphokines, ed. S. Cohen, E. Pick, and J. Oppenheim, pp. 165–180, Academic Press, New York.

    Google Scholar 

  58. Bonnard, G., and West, W. 1979. Cell mediated cytotoxicity in humans. A critical review of experimental models and clinically oriented studies. In, Immunodiagnosis of Cancer, Part 2, ed. R. B. Herberman and K. R. Mclntire, pp. 1032–1105. Marcel Dekker, Inc., New York.

    Google Scholar 

  59. Peter, H.H., Eife, R.E., and Kalden, J.R. 1976. Spontaneous cytotoxicity (SCMC) of normal human lymphocytes against a human melanoma cell line: a phenomenon due to a lymphotoxin- like mediator. J. Immunol., 116:342–348.

    PubMed  CAS  Google Scholar 

  60. Evans, C.H. 1981. The role of lymphotoxin in natural cell- mediated cytotoxicity. Cell Immunol., 63:1–15.

    Article  PubMed  CAS  Google Scholar 

  61. Van Den Bosch, H. 1980. Intracellular phospholipases A. Biochim. Biophys. Acta, 604:191–246.

    PubMed  Google Scholar 

  62. Rittenhouse-Simmons, S. 1981. Differential activation of platelet phospholipases by thrombin and ionophore A23187. J. Biol. Chem., 256:4153–4155.

    PubMed  CAS  Google Scholar 

  63. Goldstein, B.D., Witz, G., Amoruso, M., and Troll, W. 1979. Protease inhibitors antagonize the activation of polymorphonuclear leukocyte oxygen consumption. Biochem. Biophy. Res. Comm., 88:854–860.

    Article  CAS  Google Scholar 

  64. Kitagawa, S., Takaku, F., and Sakamoto, S. 1979. Serine protease inhibitors inhibit superoxide production by human polymorphonuclear leukocytes and monocytes stimulated by various surface active agents. FEBS Letters, 107:331–334.

    Article  PubMed  CAS  Google Scholar 

  65. Kitagawa, S., Takaku, F., and Sakamoto, S. 1980. Evidence that proteases are involved in superoxide producion by human polymorphonuclear leukocytes and monocytes. J. Clin. Invest., 65: 74–81.

    Article  PubMed  CAS  Google Scholar 

  66. Weitzen, M., and Granger, G.A. 1980. The human L.T. system. VIII. A target cell dependent enzymatic activation step required for the expression of the cytotoxic activity of human lymphotoxin. J. Immunol., 125;719–724.

    PubMed  CAS  Google Scholar 

  67. Kobayashi, Y., Sawada, J., and Osawa, T. 1979. Activation of membrane phospholipase A by guinea pig lymphotoxin (GLT). J. Immunol., 122:791–794.

    PubMed  CAS  Google Scholar 

  68. Temple, A., and Allison, A.C. 1980. Cytolysis of fibroblasts by C3a. Brit. J. Cancer, 42:21–25.

    Article  CAS  Google Scholar 

  69. Granger, D.L., Taintor, R.R., Cook, J.L., and Hibbs, J.B. 1980. Injury of neoplastic cells by murine macrophages leads to inhibition of mitochondrial respiration. J. Clin. Invest., 65:357–370.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Goldfarb, R.H., Timonen, T., Herberman, R.B. (1982). Mechanisms of Tumor Cell Lysis by Natural Killer Cells. In: Clark, W.R., Golstein, P. (eds) Mechanisms of Cell-Mediated Cytotoxicity. Advances in Experimental Medicine and Biology, vol 146. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8959-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8959-0_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8961-3

  • Online ISBN: 978-1-4684-8959-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics