Skip to main content

Activated Macrophage Mediated Cytotoxicity for Transformed Target Cells

  • Chapter

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 146)

Abstract

The biochemical mechanisms that induce target cell lysis in cell mediated cytotoxicity systems—cytotoxic T-lymphocytes, natural killer cells, natural cytotoxicity cells, antibody dependent cell mediated cytotoxicity systems, and cytotoxic activated macrophages—are unknown. Identification of the biochemical effector mechanism(s) utilized by activated macrophages to induce stasis and lysis of transformed target cells is complicated by the large armamentarium of potential cytotoxic effector molecules that can be elaborated by macrophages. Evidence of activated macrophage mediated target cell cytotoxicity-cytostasis and cytolysis—has been observed and documented most extensively with techniques suitable for analysis of biologic phenomena at the cellular level. Observation at the cellular level has not provided evidence that demonstrates, in a definitive way, which potential effector molecules, among the many elaborated by macrophages, are relevant to the destruction of nucleated mammalian cells or to control of abnormal proliferation of mammalian cells in vivo.

Keywords

  • Target Cell
  • L1210 Cell
  • Mitochondrial Respiration
  • Terminal Electron Acceptor
  • Mycobacterium Bovis

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4684-8959-0_17
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-1-4684-8959-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Granger, D.L., Taintor, R.R., Cook, J.L., and J.B. Hibbs, Jr. Injury of neoplatic cells by murine macrophages leads to inhibition of mitochondrial respiration. J. Clin. Invest. 65:357 (1980).

    PubMed  CrossRef  CAS  Google Scholar 

  2. Hibbs, J.B., Jr., Lambert, L.H., Jr., and J.S. Remington. Control of carcinogenesis: A possible role for the activated macrophage. Science 177:998 (1972).

    PubMed  CrossRef  Google Scholar 

  3. Meitzer, M.S., Tucker, R.W., and A.C. Breur. Interaction of BCG-activated macrophages with neoplastic and nonneoplastic cell lines - in vitro: Cinemicrographic analysis. Cell. Immunol. 17:30 (1975).

    CrossRef  Google Scholar 

  4. Keller, R. Cytostatic elimination of syngeneic rat tumor cells in vitro by nonspecifically activated macrophages. J. Exp. Med. 138:625 (1973).

    PubMed  CrossRef  CAS  Google Scholar 

  5. Krahenbuhl, J.L., and J.S. Remington. The role of activated marcophages in specific and nonspecific cytostasis of tumor cells. J. Immunol. 113:507 (1974).

    PubMed  CAS  Google Scholar 

  6. Krahenbuhl, J.L. Effects of activated macrophages of tumor target cells in discrete phases of the cell cycle. Cancer Res. 40:4622 (1980).

    PubMed  CAS  Google Scholar 

  7. Kaplan, A.M., Brown, J., Collins, J.M., Morahan, P.S., and M.J. Snodgrass. Mechanism of macrophage-mediated tumor cell cytotoxicity. J. Immunol. 121:1781 (1978).

    PubMed  CAS  Google Scholar 

  8. Skipper, H.E., Schabel, F.M., Jr., and W.S. Wilcox. Experimental evaluation of potential anticancer agents. XIII. On the criteria and kinetics associated with “curability” of experimental leukemia. Cancer Chemother. Rep. 35:1 (1964).

    PubMed  CAS  Google Scholar 

  9. Hibbs, J.B., Jr., Lambert, L.H., Jr., and J.S. Remington. Resistance to murine tumors conferred by chronic infection with intracellular protozoa. Toxoplasma gondii and Bemitia jellisonii. J. Infect. Dis. 124:587 (1971).

    PubMed  CrossRef  Google Scholar 

  10. Lehninger, A.L. Biochemistry. Worth Publishers, Inc., New York, p. 387 (1975).

    Google Scholar 

  11. Slater, E.C. Application of inhbitors and uncouplers for study of oxidastive phosphorylation. Methods Enzymol. 10: 48 (1967).

    CrossRef  CAS  Google Scholar 

  12. Racker, E. Lecture 4: The coupling device: J “A New Look at Mechanisms in Bioenergetics,” Academic Press, Inc., New York, p. 67 (1976).

    Google Scholar 

  13. Granger, D.L., and J.B. Hibbs, Jr. Recovery from injury incurred by leukemia cells in contact with activated macrophages. Fed. Proc. 40:761 (1981).

    Google Scholar 

  14. Lewis, A.M., Jr., and J.L. Cook. Presence of allograft- rejection resistance in simian virus 40-transformed hamster cells and its possible role in tumor development. Proc. Natl. Acad. Sci. USA 77:2889 (1980)

    Google Scholar 

  15. Butel, J.S., Tenethia, S.S., and J.L. Melnick. Oncogenicity and cell transformation by papovavirus SV40: The role the viral genome. Adv. in Cancer Res. 15:1 (1972).

    CrossRef  CAS  Google Scholar 

  16. Duncan, W.R., and J.W. Streilein. Analysis of the major histocompatibility complex in Syrian hamsters. Transplantation 25: 12 (1978).

    PubMed  CrossRef  CAS  Google Scholar 

  17. Cook J.L., Hibbs, J.B., Jr., and A.M. Lewis, Jr. Resistance of simian virus 40-transformed hamster cells to the cytolytic, effect of activated macrophages: A possible factor in species- specific viral oncogenicity. Proc. Natl. Acad. Sci. USA 77:6773 (1980).

    PubMed  CrossRef  CAS  Google Scholar 

  18. Zbar, B., Wepsic, H.T., Borsos, T., and H.J. Rapp. Tumor graft rejection in sjmgeneic guinea pigs: Evidence for a two-step mechanism. J. Nat. Cancer Inst. 44:473 (1970).

    PubMed  CAS  Google Scholar 

  19. Hibbs, J.B., Jr. Macrophage nonimmunologic recognition: Target cell factors related to contact inhibition. Science 180:868 (1973).

    PubMed  CrossRef  Google Scholar 

  20. Hibbs, J.B., Jr., Chapman, H.A., Jr., and J.B. Weinberg. The macrophage as an antineoplastic surveillance cell: Biologic perspectives. J. Reticuloendothelial Soc. 24:549 (1978).

    CAS  Google Scholar 

  21. Hibbs, J.B., Jr. Heterocytolysis by macrophages activated by bacillus Calmette-Guerin: Lysosome exocytosis into tumor cells. Science 184:468 (1974).

    PubMed  CrossRef  CAS  Google Scholar 

  22. Bucana, C., Hoyer, L.C., Hobbs, B., Breesman, S., McDaniel, M., and M.G. Hanna. Morphological evidence for the translocation of lysosomal organelles from cytotoxic macrophages into the cytoplasm of tumor target cells. Cancer Res. 36:4444 (1976).

    PubMed  CAS  Google Scholar 

  23. Otto, K. Cathespins Bi and B2. “Tissue Proteinases,” edited by A.J. Barrett and J.T. Dingle. North-Holland Publishing Co., Amsterdam, p. 1 (1971).

    Google Scholar 

  24. Adams, D.O. Effector mechanism of cytolytically activated macrophages. I. Secretion of neutral proteases and effect of protease inhibitors. J. Immunol. 124:286 (1980).

    PubMed  CAS  Google Scholar 

  25. Hibbs, J.B., Jr., Taintor, R.R., Chapman, H.A., Jr., and J.B. Weinberg. Macrophage tumor cell killing: Influence of the local environment. Science 197:279 (1977).

    PubMed  CrossRef  Google Scholar 

  26. Chang, T.W., and H.N. Eisen. Effects of TLCK bn the activity of cytotoxic lymphocytes. J. Immunol. 124:1028 (1980).

    PubMed  CAS  Google Scholar 

  27. Martz, E. Mechanism of specific tumor cell lysis by allo- immune T-lymphocytes: Resolution and characterization of discrete steps in the cellular interaction. Contemp. Top. Immunol. 7:301 (1977).

    CrossRef  CAS  Google Scholar 

  28. Roder, JC., Argov, S., Klein, M., Petersson, C., Kiessling, R., Anderson, K., and M. Hansson. Target-effector cell interaction in the natural killer cell system. V. Energy requirements, membrane integrity, and the possible involvement of lysosomal enzymes. Immunology 40:107 (1980).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Hibbs, J.B., Granger, D.L., Cook, J.L., Lewis, A.M. (1982). Activated Macrophage Mediated Cytotoxicity for Transformed Target Cells. In: Clark, W.R., Golstein, P. (eds) Mechanisms of Cell-Mediated Cytotoxicity. Advances in Experimental Medicine and Biology, vol 146. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8959-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8959-0_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8961-3

  • Online ISBN: 978-1-4684-8959-0

  • eBook Packages: Springer Book Archive