Skip to main content

The Role of Arterial Endothelial Cell Mitosis in Macromolecular Permeability

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 242))

Abstract

Atherosclerosis is characterized by focal areas of lipid accumulation and intimal smooth muscle cell proliferation. Atherosclerotic lesions tend to develop in preferential areas in the aortic tree,1 where transendothelial macromolecular permeability is high as indicated by an enhanced uptake of the protein-binding azo dye Evans Blue in vivo.2–4 These so-called blue areas have been shown to be associated with an increased rate of endothelial cell turnover3,5 and an enhanced permeability to low density lipoproteins (LDL).6 The subendothelial accumulation of unesterified cholesterol has been hypothesized to be an initial event in atherogenesis.7 The mechanism by which macromolecules such as LDL or albumin enter the arterial wall, however, is still not completely understood.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S Glagov, Hemodyamic risk factors: Mechanical stress, mural architecture, medial nutrition and the vulnerability of arteries to atherosclerosis, In: “The pathogenesis of athrosclerosis,” R.W. Wissler and J.C. Geer, ed., Baltimore, Wilhams and Wilkins Press, (1972).

    Google Scholar 

  2. M.A. Packham, H.C. Rowsell, L. Jorgensen and J.F. Mustard, Localized protein accumulation in the wall of the aorta, Exptl Molec Pathol 7:214–232 (1967).

    Article  CAS  Google Scholar 

  3. B.A. Caplan and C.J. Schwartz, Increased endothelial cell turnover in areas of in vivo Evans Blue uptake in the pig aorta. Atherosclerosis 17:401–417 (1973).

    Article  PubMed  CAS  Google Scholar 

  4. R.G. Gerrity, M. Richardson, J.B. Somer, P.P. Bell and C.J. Schwartz, Endothelial cell morphology in area of in vivo Evans Blue uptake in the aorta of young pigs. II. Ultrastructure of the intima in area of differing permeability to proteins. Am J Pathol 89:313–334 (1977).

    PubMed  CAS  Google Scholar 

  5. S.M. Schwartz, E.P. Benditt, Clustering of replicating cells in aortic endothelium, Proc Natl Acad Sci USA 73:651–653 (1976).

    Article  PubMed  CAS  Google Scholar 

  6. C.J. Schwartz, E.A. Sprague, S.R. Fowler and J.L. Kelley, Cellular participation in atherogenesis: selected facets of endothelium, smooth muscle and the periheral blood monocyte. In “Fluid Dynamics as a Localizing Factor for Atherosclerosis,” G. Schettler ed.. Springer-Verlag Press, Berlin (1983)

    Google Scholar 

  7. H.S. Kruth, Subendothelial accumulation of unesterified cholesterol. An early event in atherosclerotic lesion development. Atherosclerosis 57:337–341 (1985).

    Article  PubMed  CAS  Google Scholar 

  8. D. Steinberg, Lipoproteins and atherosclerosis. A look back and a look ahead, Arteriosclerosis 3:283–301 (1983).

    Article  PubMed  CAS  Google Scholar 

  9. M.A. Reidy and S.M. Schwartz, Developments in the study of endothelial cells by scanning electron microscopy. Artery 8:236–243 (1980).

    PubMed  CAS  Google Scholar 

  10. C.K. Zarins, K.E. Taylor, R.A. Bomberger and S. Glagov, Endothelial integrity at aortic ostial flow dividers, Scan Electron Microsc 3:249–254 (1980).

    PubMed  Google Scholar 

  11. R.M. Nerem, M.J. Levesque and J.F. Cornhill, Vascular endothelial morphology as an indicator of the pattern of blood flow, ASME J. Biomech Eng 103:172–176 (1981).

    Article  CAS  Google Scholar 

  12. W.E. Stehbens, Endothelial cell mitosis and permeability,Q J Exp Physiol 50:90–92 (1965).

    CAS  Google Scholar 

  13. S. Weinbaum, G. Tzeghai, P. Ganatos, R. Pfeffer and S. Chien, Effect of cell turnover and leaky junctions on arterial macromolecular transport. Am J Physiol 248:H945-H960 (1985).

    PubMed  CAS  Google Scholar 

  14. S. Weinbaum, G.B. Wen, P. Ganatos, R. Pfeffer, M. Lee and S. Chien, On the transient diffusion of macromolecules through leaky junctions and their subendothelial spread; Part I. Short time model for cleft exit region, J Theor Biol, in press (1988).

    Google Scholar 

  15. G.B. Wen, S. Weinbaum, P. Ganatos, R. Pfeffer and S. Chien, On the transient diffusion of macromolecules through leaky junctions and their subendothelial spread; Part II. Long time model for interaction between leakage sites, 7. Theor Biol, in press (1988).

    Google Scholar 

  16. S.J. Lin, K.M. Jan S. Weinbaum and S. Chien, Enhanced macromolecular permeability of aortic endothelial cells in association with mitosis. Atherosclerosis, in press (1988).

    Google Scholar 

  17. T. Zand, J.M. Underwood, J.J. Nunnari, G. Majno and I. Joris, Endothelium and “silver lines”. An electron microscopic study, Virchows Arch [Pathol Ana] 395:133–144 (1982).

    Article  CAS  Google Scholar 

  18. M. Bundgaard, The three dimensional organisation of tight junctions in a capillary with continuous endothelium revealed by serial section electron microscopy, J Ultrastruct Res 88:1–17 (1984).

    Article  PubMed  CAS  Google Scholar 

  19. S.H. Song and M.R. Roach, Qauntitative changes in the size of fenestrations of the elastic laminae of sheep thoracic aorta studied with SEM, Blood Vessels 20:145–153 (1983).

    PubMed  CAS  Google Scholar 

  20. E.B. Smith and E.M. Staples, Plasma protein concentrations in interstitial fluid from human aortas, Proc Roy Soc London B217:59–75 (1982).

    Google Scholar 

  21. D. Fry, Mass transport, atherogenesis and risk, Arteriosclerosis 7:88–100 (1987).

    Article  PubMed  CAS  Google Scholar 

  22. M.J. Karnovasky, The ultrastructural basis of capillary permeability studies with peroxidase as atracer, J Cell Biol 35:213–236 (1967).

    Article  Google Scholar 

  23. M.B. Stemerman, E.M. Morrel, K.R. Burke, C.K. Colton, K.A. Smith and R.S. Lees, Local variation in arterial wall permeability to low density lipoprotein in normal rabbit aorta. Arteriosclerosis, 6:64–69 (1986).

    Article  PubMed  CAS  Google Scholar 

  24. S.M. Schwartz and E.P. Benditt, Cell replication in the aortic endothelium: A new method for study of the problem. Lab Invest 28:699–707 (1973).

    PubMed  CAS  Google Scholar 

  25. G.E. White, M.A. Gimbrone and K. Fujiwara, Factors influencing the expression of stress fibers in vascular endothelial cells in site, J Cell Biol 97:14–24 (1983).

    Google Scholar 

  26. I. Huttner, C. Walker and G. Gabbiani, Aortic endothelial cell during regeneration. Remodeling of cell junctions, stress fibers, and stress fiber-membrane attachment domains. Lab Invest 53:287–302 (1985).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Chien, S., Lin, SJ., Weinbaum, S., Lee, M.M.L., Jan, KM. (1988). The Role of Arterial Endothelial Cell Mitosis in Macromolecular Permeability. In: Chien, S. (eds) Vascular Endothelium in Health and Disease. Advances in Experimental Medicine and Biology, vol 242. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8935-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8935-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8937-8

  • Online ISBN: 978-1-4684-8935-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics