Skip to main content

Summary

This paper is an expanded version of one recently published in Foundations of Physics and is a continuation of previous works devoted to the EPR correlation.

The leading idea remains that the EPR correlation (either in its well-known form of nonseparability of future measurements, or in its less known time-reversed form of nonseparability of past preparations) displays the intrinsic time symmetry existing in almost all physical theories at the elementary level. But, as explicit Lorentz invariance has been an essential requirement in both the formalization and the conceptualization of my papers, the noninvariant concept of T symmetry has to yield in favor of the invariant concept of PT symmetry, or even (as C symmetry is not universally valid) to that of CPT invariance.

A distinction is then drawn between “macro” special relativity, defined by invariance under the orthochronous Lorentz group and submission to the retarded causality concept, and “lmicro” special relativity, defined by invariance under the full Lorentz group and including CPT symmetry. The CPT theorem clearly implies that “micro special relativity” is relativity theory at the quantal level. It is thus of fundamental significance not only in the search of interaction Lagrangians etc., but aJso in the basic interpretation of quantum mechanics, including the understanding ot the EPR correlation.

While the experimental existence of the EPR correlations is manifestly incompatible with macro relativity, it is fully consistent with micro relativity. It goes without saying that going from a retarded concept of causality to one that is CPT invariant has very radical consequences, which are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. O. Costa de Beauregard, “Time Symmetry and Interpretation of Quantum Mechanics,” Found. Phys. 6, 539 (1976).

    Article  Google Scholar 

  2. The following discussions will show that CPT invariance is the covariant (and very legitimate) heir of the classical T symmetry.

    Google Scholar 

  3. State vector collapse is taken by some as a more rigorous wording. We express here this concept by the shorter and more intuitive wording of wave collapse.

    Google Scholar 

  4. We are using Dirac’s notation together with his remark that an expansion \( \psi {\rm{a}}\left( {\rm{x}} \right)\; = \;\sum c _i^a{\phi _{\rm{i}}}\left( {\rm{x}} \right)\) (x. can be written (summation sign omitted), \( \left\langle {{\rm{a}}} \mathrel{\left | {\vphantom {{\rm{a}} {\rm{x}}}} \right. \kern-\nulldelimiterspace} {{\rm{x}}} \right\rangle \; = \;\left\langle {{\rm{a}}} \mathrel{\left | {\vphantom {{\rm{a}} {\rm{i}}}} \right. \kern-\nulldelimiterspace} {{\rm{i}}} \right\rangle \;\left\langle {{\rm{i}}} \mathrel{\left | {\vphantom {{\rm{i}} {\rm{x}}}} \right. \kern-\nulldelimiterspace} {{\rm{x}}} \right\rangle\) where ψ; and the ϕ’s are interpreted as transition amplitudes.

    Google Scholar 

  5. P. A. M. Dirac, The Principles of Quantum Mechanics (Oxford Clarendon Press, 1948), p. 79

    Google Scholar 

  6. A. Lande, New Foundations of Quantum Mechanics (Cambridge University Press, Cambridge, 1965), p. 83.

    Google Scholar 

  7. J. Schwinger, Phys. Rev. 74, 1439 (1948). See p. 1451.

    Article  Google Scholar 

  8. O. Costa de Beauregard, Précis de mécanique quantique reJativiste (Dunod, Paris, 1967). See also Synthese 35, 129 (1977), p. 143, reprinted in Hans Reichenbach, Logical Empiricist ,W. C. Salmon, editor (D. Reidel, Dordrecht, 1979), p. 341–.

    Google Scholar 

  9. As, in the formalism of Ref. 6, the Jordan-Pauli propagator is the Fourier transform of the Fourier nucleus, the position operator associated with the Klein-Gordon equation is the 4-vector x modulo that it ends on σ (that is, 3 degrees of freedom and not 4; for example, the components of x). This statement does not contradict the more complicated expression of the Newton-Wigner position operator, where by definition only positive frequencies are accepted, because my formalism essentially requires both the positive and the negative frequencies on an equal footing (private correspondence with R. F. O’Connell).

    Google Scholar 

  10. A. Einstein, in Rapports et Discussions du 5e ConseiJ Solvay (Gauthier Villars, Paris, 1928), p. 253–256. In this early intuitive discussion of the paradox, Einstein incidentally referred to an apparent conflict with his special relativity theory.

    Google Scholar 

  11. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935). The analysis is in terms of the nonrelativistic Schrödinger formalism; the sting of the paradox is still more painful in relativistic quantum mechanics.

    Article  CAS  Google Scholar 

  12. S. J. Freedman and J. F. Clauser, Phys. Rev. Lett. 28, 938 (1972)

    Article  CAS  Google Scholar 

  13. J. F. Clauser, ibid. 36, 1223 (1976);

    Article  CAS  Google Scholar 

  14. E. S. Fry and R. C. Thompson, Ibid. 37, 465 (1976).

    Article  CAS  Google Scholar 

  15. A. Aspect, Phys. Lett. 54A, 117 (1975)

    Google Scholar 

  16. A. Aspect, Phys. Rev. D 14, 1944 (1976).

    Article  Google Scholar 

  17. O. Costa de Beauregard, Nuovo Cimento 42B, 41 (1977)

    Google Scholar 

  18. O. Costa de Beauregard, Lett. Nuovo Cimento 19, 113 (1977)

    Article  Google Scholar 

  19. O. Costa de Beauregard, Phys. Lett. 60A, 93 (1977)

    Google Scholar 

  20. The Wigner motion reversal is not defined as geometrical reversal of the time axis, whereas the Racah time reversal is. This point will be discussed in the fourth section. In fact, it was already PT symmetry that Loschmidt and Zermelo were stressing in the framework of the Galileo-Newton mechanics.

    Google Scholar 

  21. S. I. Tomonaga, Prog. Theor. Phys. 1, 27 (1946)

    Article  Google Scholar 

  22. J. Schwinger, Phys. Rev. 74, 1439 (1948)

    Article  Google Scholar 

  23. F. J. Dyson, Phys. Rev. 75, 486 (1949)

    Article  Google Scholar 

  24. R. P. Feynman, Phys. Rev. 76, 749, 769 (1949).

    Article  CAS  Google Scholar 

  25. B. D’Espagnat, Conceptual Foundations of Quantum Mechanics, 2nd Ed. (Benjamin, New York, 1976), pp. 90, 119, 238, 265, and 281.

    Google Scholar 

  26. J. F. Clauser and A. Shimony, Rep. Prog. Phys. 41, 1881 (1978); see p. 1920.

    Article  CAS  Google Scholar 

  27. H. P. Stapp, Found. Phys. 7, 313 (1977).

    Article  Google Scholar 

  28. B. D’Espagnat and J. S. Bell, private communications.

    Google Scholar 

  29. N. Cufaro Petroni and J. P. Vigier, Lett. Nuovo Cimento 25, 151 (1979).

    Article  Google Scholar 

  30. P. A. M. Dirac, Nature 168, 906 (1951).

    Article  Google Scholar 

  31. A. R. Wilson, J. Lowe, and D. K. Butt, J. Phys. G 2 613 (1976)

    Article  CAS  Google Scholar 

  32. M. Bruno, M. d’Agostino, and C. Maroni, Nuovo Cimento 40B, 143 (1977).

    CAS  Google Scholar 

  33. R. L. Pflegor and L. Mandel, Phys. Rev. 159, 1084 (1967)

    Article  Google Scholar 

  34. R. L. Pflegor and L. Mandel, Jn. Opt. Soc. Am. 58, 946 (1968).

    Article  Google Scholar 

  35. P. Eberhard, Nuovo Cimento 46B, 392 (1978).

    Google Scholar 

  36. G. Lüders, K. Dansk Videns. Selsk. 28, 5 (1954)

    Google Scholar 

  37. G. Lüders, Ann. Phys. (Leipzig) 2, 1 (1957)

    Article  Google Scholar 

  38. W. Pauli, Niels Bohr and the development of physics ,W. Pauli, L. Rosenfeld, and V. Weisskopf, editors (Pergamon, New York, 1955), p. 30.

    Google Scholar 

  39. A. D. Fokker, Time and Space ,Weight and inertia (Pergamon, New York, 1965).

    Google Scholar 

  40. G. Racah, Nuovo Cimento 14, 322 (1937).

    Article  Google Scholar 

  41. E. Wigner, Gott. Nachr. 31, 546 (1932).

    Google Scholar 

  42. It should be noted that the Feynman propagator DF (-) ≡ D -½ (D+ + D_) is PT invariant, as is also the anti-Feynman propagator DF (+) ≡ D + ½ (D+ + D-) obtained by sidestepping the two poles the other way around. As is well known, use of the Feynman propagator ensures automatically an exponential decay if used in prediction (but, symmetrically, an exponential build-up if used in retrodiction). The opposite would follow from use of the anti-Feynman propagator. See Ref. 46, p. 408.

    Google Scholar 

  43. T. S. Kuhn, The Structure of Scientific Revolutions (University of Chicago Press, Chicago, 1962; 2nd ed, 1970).

    Google Scholar 

  44. P. Duhem, The Aim and Structure of Physical Theory ,Part II, Chaps. 4 and 6 (Princeton Univ. Press) translated after the French 1913 edition by P. P. Wiener.

    Google Scholar 

  45. See P. F. Liao and G. C. Bjorklund, Phys. Rev. Lett. 36, 584 (1976), for an anticascade experiment with polarizers.

    Article  CAS  Google Scholar 

  46. S. Watanabe, Rev. Mod. Phys. 27, 179 (1955).

    Article  Google Scholar 

  47. V. Fock, Dokl. Akad. Nauk SSSR 60, 1157 (1948).

    Google Scholar 

  48. O. Costa de Beauregard, Cah. Phys. 2, 317 (1958)

    Google Scholar 

  49. Y. Aharonov, P. G. Bergmann, and Y. Lebowitz, Phys. Rev. 134B, 1410 (1964)

    Article  Google Scholar 

  50. F. J. Belinfante, Measurements and Time Reversal in Objective Quantum Theory (Pergamon, New York, 1975)

    Google Scholar 

  51. P. C. W. Davies, The physics of time asymmetry (Surrey Univ. Press, 1974).

    Google Scholar 

  52. This is d’Espagnat’s (Ref. 15) very appropriate wording, following Einstein, Podolsky, and Rosen (Ref. 9).

    Google Scholar 

  53. Of course, absolutely speaking, this is not the end of the story, as the optical nerve and brain area belong to the picture; and where should we stop and say “here and now I have seen the photon”? J. von Neumann, Mathematische Grundlagen der Quantum Mechanik (Springer, Berlin, 1932), Chap. VI.

    Google Scholar 

  54. O. Costa de Beauregard, C. R. Acad. Sci. Paris 236, 1632 (1953).

    Google Scholar 

  55. C. von Weiszäcker, Z. Phys. 70, 114 (1931).

    Article  Google Scholar 

  56. J. A. Wheeler, Mathematical Foundations of Quantum Theory ,J. A. Marlow, editor (Academic Press, New York, 1977), p. 9.

    Google Scholar 

  57. N. Bohr, Phys. Rev. 48, 696 (1935).

    Article  CAS  Google Scholar 

  58. W. Renninger, Physik 158, 417 (1960)

    Article  Google Scholar 

  59. W. Renninger, Phys. Z. 136, 251 (1963).

    Article  Google Scholar 

  60. “Your theory is crazy, but not crazy enough to be true” (N. Bohr). “For any speculation which does not at first glance look crazy, there is no chance” (F. J. Dyson).

    Google Scholar 

  61. O. Costa de Beauregard, Lett. Nuovo Cimento 26, 135 (1979).

    Article  Google Scholar 

  62. R. Payen and J. M. Vigoureux, Lett. Nuovo Cimento 20, 263 (1977).

    Article  Google Scholar 

  63. Suppose some archaeologists discover that similar cultures have developed along two converging rivers running through barren country. Will they assume that there has been some direct interaction between any site on one river and any site on the other? Or rather, that the influence has traveled up and down, via navigation on the rivers?

    Google Scholar 

  64. S. Watanabe, Phys. Rev. 84, 1008 (1951).

    Article  Google Scholar 

  65. J. M. Jauch and F. Rohrlich, The Theory of photons and electrons ,(Addison-Wesley, Reading, Massachusetts, 1955); see pp. 88–96.

    Google Scholar 

  66. Jauch and Rohrlich, Ref. 46, make the surprising statement that it does not; this is because they do not reverse (as they should) the sign of the 3-volume element.

    Google Scholar 

  67. R. Mignani and E. Recami, Lett. Nuovo Cim. 11, 421 (1974)

    Article  CAS  Google Scholar 

  68. E. Recami and G. Zumino, Nuovo Cim. 33A, 205 (1976).

    Article  CAS  Google Scholar 

  69. E. Wigner, Symmetries and Reflections (M.I.T. Press, Cambridge, Massachusetts, 1967), pp. 171–184.

    Google Scholar 

  70. In almost all textbooks on quantum mechanics it is stated that there is a reaction of the measuring apparatus upon the observed system. It is very queer that a necessary consequence of this statement is not drawn, namely, the reaction of the observer upon the so-called observed system-because, where is the severance between the observer and the measuring apparatus?

    Google Scholar 

  71. R. Descartes, Lettres (Adam-Tannery eds.) 1, 222 (letter 525) and III, 663 (letter 302).

    Google Scholar 

  72. H. Mehlberg, Current Issues in the Philosophy of Science ,H. Feigl and G. Maxwell, editors (Holt, Rinehart, Winston, New York, 1961), p. 105.

    Google Scholar 

  73. E. H. Walker, in Quantum Physics and Parapsychology ,L. Oteri, editor (Parapsychology Foundation, 1975), p. 1

    Google Scholar 

  74. R. D. Mattuck and E. H. Walker, The Iceland Papers ,A. Puharitch, editor. Foreword by B. Josephson (Essential Research Associates, Amherst, Massachusetts, 1979), p. 111.

    Google Scholar 

  75. H. Schmidt, Found. Phys. 8, 464 (1978).

    Article  Google Scholar 

  76. H. Schmidt, Bull. Am. Phys. Soc. 24, 38 (1978).

    Google Scholar 

  77. H. Schmidt, Proc. Intern. Conf. Cybernetics and Society (IEEE, New York, 1977), p. 535.

    Google Scholar 

  78. J. Hall, C. Kim, B. McElroy, and A. Shimony, Found. Phys. 7, 759 (1977).

    Article  Google Scholar 

  79. F. Capra, Le tao de la physique, in Science et Conscience ,Stock, Paris (1980), pp. 43–55 (see especially pp. 45–46).

    Google Scholar 

  80. E. E. Witmer, Am. J. Phys. 35, 40 (1967).

    Article  Google Scholar 

  81. A. A. Cochran, Found. Phys. 1, 235 (1971).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

de Beauregard, O.C. (1983). CPT Invariance as Basic for Interpreting Quantum Mechanics. In: van der Merwe, A. (eds) Old and New Questions in Physics, Cosmology, Philosophy, and Theoretical Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8830-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8830-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8832-6

  • Online ISBN: 978-1-4684-8830-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics