Skip to main content
  • 381 Accesses

Abstract

It is now possible in practice to observe macroscopic fluctuations in the time domain initiated by an isolated single spontaneous atomic emission of light. This is the socalled “superfluorescence effect (SF)” described in some recent papers.1 SF produces radiation pulses with much larger amplitude than predicted for normal incoherent radiation processes. The phenomenon is similar to the so-called “laser effect,” because the coherent decay of something like 108 atoms is triggered by a single spontaneous emission due to quantum fluctuations of the electromagnetic field in vacuum. This phenomenon, first detected in 1973,2 has been observed in a number of near-infrared, infrared, and optical transitions,3 Atomic cesium is used for studying SF from a pencilshaped volume of active atoms. The SF emission from the pencil goes mainly through its end-faces into two narrow solid angles ?Ω. The emitted light pulse reaches a peak intensity proportional to N2 (where N is the number of excited atoms) at the so-called “delay time” tD ~ (tR/4) (1n N)2, withtR = tn/ (N?Ω/4π). The emitted field behaves a classical coherent field. It has a well-defined amplitude and phase: SF emission pulses from two different samples with slightly different SF transmission frequencies produce beats. Experiment confirms that the strength of the initiating quantum noise determines the average delay time.4 SF is set off by the first photon emitted spontaneously in the solid angle ?Ω and yields as predicted by theory a relative standard deviation in the delay time of 12% for N = 108 excited atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. Q. H. F. Vrehen, M. F. H. Schuurmans, and D. Polder, Nature 285, 70 (1980).

    Article  Google Scholar 

  2. N. Skribanowitz et al., Phys. Rev. Lett. 30, 309 (1973).

    Article  Google Scholar 

  3. Q. H. F. Vrehen, Laser Spectroscopy IV Proceedings of the Fourth Int. Conf. Rottach-Egern; Fed. Rep. Germany, June 11–15, 1979, H. Walther and K. W. Rothe, editors (Springer-Verlag, Heidelberg, 1979).

    Google Scholar 

  4. Q. H. F. Vrehen and M. F. H. Schuurmans, Phys. Rev. Lett. 42, 224 (1979).

    Article  CAS  Google Scholar 

  5. See Ref. 3

    Google Scholar 

  6. R. L. Pfleegor and L. Mandel, Phys. Rev. 159, 1084 (1967)

    Article  CAS  Google Scholar 

  7. R. L. Pfleegor and L. Mandel, J. Opt. Soc. Amer. 58, 946 (1968).

    Article  Google Scholar 

  8. E. E. Fitchard, Found. Phys. 9, 525 (1979).

    Article  Google Scholar 

  9. F. Selleri and J. -P. Vigier, “Sur la description de Copenhague de la mésure de spin des systemes quantiques correlées,” Bari-Poincaré preprint (1980).

    Google Scholar 

  10. A. Einstein, in A. Einstein Philosopher-Scientist P. A. Schlipp, editor (Library of Living Philosophers, 1949).

    Google Scholar 

  11. L. de Broglie, La Theorie Quantique Restera-t-elle indeterministe? (Gauthier-Villars, Paris, 1952).

    Google Scholar 

  12. D. Bohm and J. -P. Vigier, Phys. Rev. 96, 208 (1954)

    Article  Google Scholar 

  13. W. Lehr and J. Park, J. Math. Phys. 18, 1235 (1977)

    Article  Google Scholar 

  14. E. Nelson, Phys. Rev. 150, 1079 (1966).

    Article  CAS  Google Scholar 

  15. L. de Broglie, La Thermodynamique de Ja Particule lsolée (Gauthier-Villars, Paris, 1964).

    Google Scholar 

  16. J. -P. Vigier, Nuovo Cimento Lett. 24, 265 (1979); 24, 258 (1979)

    Article  Google Scholar 

  17. N. Cufaro-Petroni and J. -P. Vigier, Nuovo Cimento Lett. 25, 15 (1979); 29, 149 (1979).

    Google Scholar 

  18. J. F. Clauser, Phys. Rev. D 9, 853 (1974).

    Article  CAS  Google Scholar 

  19. F. Selleri, Nuovo Cimento Lett. 1, 908 (1969)

    Article  Google Scholar 

  20. A. Szczepanski, Found. Phys. 6, 427 (1976)

    Article  Google Scholar 

  21. A. Garuccio and J. -P. Vigier, Found. Phys. 10, 797 (1980),

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Selleri, F., Vigier, J.P. (1983). Induced Superfluorescence and the Nature of the Wave-Particle Duality. In: van der Merwe, A. (eds) Old and New Questions in Physics, Cosmology, Philosophy, and Theoretical Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8830-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8830-2_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8832-6

  • Online ISBN: 978-1-4684-8830-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics