Skip to main content

Cellular Mechanisms of Peptide Processing: Focus on α-Amidation

  • Chapter
Molecular Biology of Brain and Endocrine Peptidergic Systems

Part of the book series: Biochemical Endocrinology ((BIOEND))

  • 40 Accesses

Abstract

It is now well accepted that a vast array of peptides play essential roles in intercellular communication in both the nervous and endocrine systems. Many neurons contain both a classical neurotransmitter and a peptide (Krieger, 1983; Jones & Hendry, 1986). While we know a great deal about the control mechanisms affecting neuronal synthesis, storage and secretion of classical neurotransmitters such as the catecholamines and acetylcholine, we know relatively little about the precise way in which neuronal peptides are regulated. Our lack of knowledge concerning the mechanisms by which the synthesis, storage and secretion of bioactive peptides can be manipulated stems in large part from the relative lack of knowledge about the specific enzymes involved in converting inactive peptide precursors into their final bioactive products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ando S, Murthy ASN, Eipper BA, Chaiken IM 1987 Effect of neurophysin on enzymatic maturation on oxytocin from its precursor. J Biol Chem 262, in press.

    Google Scholar 

  • Bradbury AF, Finnie MDA, Smyth DG 1982 Mechanism of G-terminal amide formation by pituitary enzymes. Nature 298:686–688.

    Article  PubMed  CAS  Google Scholar 

  • Bradbury AF, Smyth DG 1985 C-terminal amide formation in peptide hormones. In: “Biogenetics of Neurohormonal Peptides”, Hakanson R & Thoreil J (eds), Academic Press, New York, pp 171–186.

    Google Scholar 

  • Campbell DG, Hardie DG, Vulliet PR 1986 Identification of four phosphorylation sites in the N-terminal region of tyrosine hydroxylase. J Biol Chem 261:10489–10492.

    PubMed  CAS  Google Scholar 

  • Carlson A 1987 Perspectives on the discovery of central monoaminergic neurotransmission. Annu Rev Neurosci 10:19–40.

    Article  Google Scholar 

  • Cooper JR, Bloom FE, Roth RH 1986 The “Biochemical Basis of Neuropharmacology”. Oxford University Press, New York.

    Google Scholar 

  • Dickerson IM, Dixon JE, Mains RE 1987 Transfected human neuropeptide Y cDNA expression in mouse pituitary cells. J Biol Chem 262, in press.

    Google Scholar 

  • Edelman AM, Blumenthal DK, Krebs EG 1987 Protein serine/threonine kinases. Annu Rev Biochem 56:567–613.

    Article  PubMed  CAS  Google Scholar 

  • Eipper BA, Mains RE, Glembotski CC 1983 Identification in pituitary tissue of a peptide α-amidation activity that acts on glycine-extended peptides and requires molecular oxygen, copper, and ascorbic acid. Proc Natl Acad Sci USA 80:5144–5148.

    Article  PubMed  CAS  Google Scholar 

  • Eipper BA, Myers AC, Mains RE 1985 Peptidyl-glycine α-amidation activity in tissues and serum of the adult rat. Endocrinology 116:2497–2504.

    Article  PubMed  CAS  Google Scholar 

  • Eipper BA, Park LP, Dickerson IM, Keutmann HT, Thiele EA, Rodriguez H, Schofield PR, Mains RE 1987 Structure of the precursor to an enzyme mediating C00H-terminal amidation in peptide biosynthesis. Mol Endocrinol 1, in press.

    Google Scholar 

  • Fricker LD 1988 Carboxypeptidase E. Annu Rev Physiol 50, in press.

    Google Scholar 

  • Fricker LD, Evans CJ, Esch FS, Herbert E 1986 Cloning and sequence analysis of cDNA for bovine carboxypeptidase E. Nature 323:461–464.

    Article  PubMed  CAS  Google Scholar 

  • Jones EG, Hendry SHC 1986 Colocalization of GABA and neuropeptides in neocortical neurons. Trends Neurosci 9:71–76.

    Article  CAS  Google Scholar 

  • Kizer JS, Bateman RC Jr, Miller CR, Humm J, Busby WH Jr, Youngblood WW 1986 Purification and characterization of a peptidyl-glycine monooxygenase from porcine pituitary. Endocrinology 118:2262–2267.

    Article  PubMed  CAS  Google Scholar 

  • Krieger DT 1983 Brain peptides: what, where, and why? Science 222:975–985.

    Article  PubMed  CAS  Google Scholar 

  • Kyte J, Doolittle RF 1982 A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132.

    Article  PubMed  CAS  Google Scholar 

  • Mains RE, Eipper BA 1984 Secretion and regulation of two biosynthetie enzyme activities, PAM and CPE, by mouse pituitary corticotropic tumor cells. Endocrinology 115:1683–1690.

    Article  PubMed  CAS  Google Scholar 

  • Mains RE, Glembotski CC, Eipper BA 1984 Peptide α-amidation activity in mouse anterior pituitary AtT-20 cell granules; properties and secretion. Endocrinology 114:1522–1530.

    Article  PubMed  CAS  Google Scholar 

  • May V, Cullen EI, Braas KM, Eipper BA 1988 Membrane-associated forms of peptidyl-glycine α-amidating mono oxygenase activity in pituitary: tissue specificity. Submitted.

    Google Scholar 

  • Mehta NM, Gilligan JP, Jones BN, Tamburini PP, Birnbaum RS, Roos BA, Bertelsen AH 1987 Purification and characterization of an amidating enzyme involved in peptide hormone processing. Endocrinology 120:196a.

    Google Scholar 

  • Mizuno K, Sakata J, Kojima M, Kangawa K, Matsuo H 1986 Peptide G-terminal α-amidating enzyme purified to homogeneity from Xenopus laevis skin. Biochem Biophys Res Commun 137:984–991.

    Article  PubMed  CAS  Google Scholar 

  • Mollay C., Wichta J, Kreil G 1986 Detection and partial characterization of an amidating enzyme in skin secretion of Xenopus laevis. FEBS Lett 202:251–254.

    Article  CAS  Google Scholar 

  • Moore RY, Bloom FE 1979 Central catecholamine neuron systems. Annu Rev Neurosci 2:113–168.

    Article  PubMed  CAS  Google Scholar 

  • Murthy ASN, Keutmann HT, Eipper BA 1987 Further characterization of peptidyl-glycine α-amidating monooxygenase from bovine neurointermediate pituitary. Mol Endocrinol 1:290–299.

    Article  PubMed  CAS  Google Scholar 

  • Murthy ASN, Mains RE, Eipper BA 1986 Purification and characterization of peptidyl-glycine α-amidating monooxygenase from bovine neurointermediate pituitary. J Biol Chem 261:1815–1822.

    PubMed  CAS  Google Scholar 

  • Park LP, Thiele EA, Dickerson IM, Mains RE, Eipper BA 1987 Cloning of cDNA encoding bovine PAM. In: “Highlights on Endocrinology”, Christiansen C & Riis BJ (eds) Norhaven Bogtrykkeri, Copenhagen, pp 133–140.

    Google Scholar 

  • Pocotte SL, Holz RW, Ueda T 1986 Cholinergic receptor-mediated phosphorylation and activation of tyrosine hydroxylase in cultured bovine adrenal chromaffin cells. J Neurochem 46:610–622.

    Article  PubMed  CAS  Google Scholar 

  • Sakata J, Mizuno K, Matsuo H 1986 Tissue distribution and characterization of peptide C-terminal α-amidating activity in rat. Biochem Biophys Res Commun 140:230–236.

    Article  PubMed  CAS  Google Scholar 

  • Sato SM, Mains RE 1988 Plasticity in the ACTH-related peptides produced by primary cultures of neonatal rat pituitary. Endocrinology 122, in press.

    Google Scholar 

  • Seguin C., Hamer DH 1987 Regulation in vitro of metallothionein gene binding factors. Science 235:1383–1387.

    Article  PubMed  CAS  Google Scholar 

  • Sigel H (ed) 1981 “Metal Ions in Biological Systems”. Marcel Dekker, Inc., New York, vol 13.

    Google Scholar 

  • Tramu G, Pillez A, Leonardelli J 1978 An efficient method of antibody elution for the successive or simultaneous localization of two antigens by immunocytochemistry. J Histochem Cytochem 26:322–324.

    Article  PubMed  CAS  Google Scholar 

  • van der Eb AJ, Graham FL 1980 Assay of transforming activity of tumor virus DNA. Methods Enzymol 65:826–839.

    Article  PubMed  Google Scholar 

  • von Heijne G 1981 Membrane proteins: the amino acid composition of membrane-penetrating segments. Eur J Biochem 120:275–278.

    Article  Google Scholar 

  • von Heijne G 1985 Signal sequences: the limits of variation. J Mol Biol 184:99–105.

    Article  Google Scholar 

  • Walter P, Lingappa VR 1986 Mechanism of protein translocation across the endoplasmic reticulum membrane. Annu Rev Cell Biol 2:499–516.

    Article  PubMed  CAS  Google Scholar 

  • Wand GS, Ney RL, Baylin S, Eipper BA, Mains RE 1985 Characterization of a peptide α-amidation activity in human plasma and tissues. Metabolism 34:1044–1052.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Mains, R.E., May, V., Cullen, E.I., Eipper, B.A. (1988). Cellular Mechanisms of Peptide Processing: Focus on α-Amidation. In: Chrétien, M., McKerns, K.W. (eds) Molecular Biology of Brain and Endocrine Peptidergic Systems. Biochemical Endocrinology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8801-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8801-2_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8803-6

  • Online ISBN: 978-1-4684-8801-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics