Skip to main content

Induced Nonlinear Time Evolution of Open Quantum Objects

  • Chapter
Sixty-Two Years of Uncertainty

Part of the book series: NATO ASI Series ((NSSB,volume 226))

Abstract

In the first part [42] I have emphasized the fact that there is a logically consistent formulation of quantum mechanics of individual systems which is compatible with all empirical data. A necessary and sufficient condition for the feasibility of such an individual interpretation is that the referents of the theory are objects. We recall that we distinguish between the concepts «system» and «object». By a system we mean nothing but the referent of a theoretical discussion (specified, for example, by a Hamiltonian), without any ontological commitment. An object is defined to be an open quantum system which is interacting with its environment but which is not Einstein-Podolsky-Rosen-correlated with the environment. Quantum systems which are not objects are entangled with their environments, they have no individuality and allow only an incomplete description in terms of statistical states. Since in quantum theories the set of all statistical states is not a simplex, statistical states have no unique decomposition into extremal states. This fact leads to grave problems for a purely statistical interpretation of quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Arnold: Stochastische Differentialgleichungen. Theorie und Anwendung. München. Oldenbourg. 1973.

    MATH  Google Scholar 

  2. L. Arnold: English translation: Stochastic Differential Equations: Theory and Application. New York. Wiley. 1974.

    Google Scholar 

  3. A. O. Barut and J. P. Dowling: Quantum electrodynamics based on self-energy, without second quantization: The Lamb shift and long-range Casimir-Polder van der Waals forces near boundaries. Phys. Rev. A 36, 2550–2556 (1987).

    Article  ADS  Google Scholar 

  4. A. O. Barut and J. F. Van Huele: Quantum electrodynamics based on self energy: Lamb shift and spontaneous emission without field quantization. Phys. Rev. A 32, 3187–3195 (1985).

    Article  ADS  Google Scholar 

  5. D. Bhaumik, B. Dutta-Roy and G. Ghosh: Classical limit of the hydrogen atom. J. Phys. A: Math. Gen. 19, 1355–1364 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  6. M. Boiteux: The three-dimensional hydrogen atom as a restricted four-dimensional harmonic oscillator. Physica 65, 381–395 (1973).

    Article  ADS  Google Scholar 

  7. T. Carleman: Application de la théorie des équations intégrales linéaires aux systèmes d’équations différentielles non linéaires. Acta Math. 59, 63–87 (1932).

    Article  MathSciNet  Google Scholar 

  8. L. Diósi: Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40,1165–1174 (1989).

    Article  ADS  Google Scholar 

  9. J. Frenkel: Wave Mechanics. Advanced General Theory. Oxford. Clarendon. 1934.

    MATH  Google Scholar 

  10. P. Funck: Die Landau-Lifshitz-Gleichung als nichtlineare Schrödingergleichung. Diplomarbeit, Laboratorium für Physikalische Chemie der ETH Zürich. 1989.

    Google Scholar 

  11. C. C. Gerry: On coherent states for the hydrogen atom. J. Phys. A: Math. Gen. 17, L737–L740 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  12. C. C. Gerry: Coherent states and the Kepler-Coulomb problem. Phys. Rev. A 33, 6–11 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  13. N. Gisin: Brownian motion of a quantum spin with friction. Progr. Theor. Phys. 66, 2274–2275 (1981).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. N. Gisin: A simple nonlinear dissipative quantum evolution. J. Phys. A: Math. Gen. 14, 2259–2267 (1981).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. N. Gisin: Spin relaxation and dissipative Schrödinger like evolution equations. Helv. Phys. Acta 54, 457–470 (1981).

    Google Scholar 

  16. N. Gisin: A model of irreversible deterministic quantum dynamics. In: Quantum Probability and Applications to the Quantum Theory of Irreversible Processes. Lecture Notes in Mathematics, vol. 1055. Berlin. Springer. 1984. Pp. 126–133.

    Chapter  Google Scholar 

  17. W. Guz: On quantum dynamical semigroups. Reports on Mathematical Physics 6, 455–464 (1974).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. M. Kibler and T. Négadi: On the connection between the hydrogen atom and the harmonic oscillator. Lett. Nuovo Cimento 37, 225–228 (1983).

    Article  MathSciNet  Google Scholar 

  19. M. Kibler and T. Négadi: On the connection between the hydrogen atom and the harmonic oscillator: the continuum case. J. Phys. A: Math. Gen. 16, 4265–4268 (1983).

    Article  ADS  Google Scholar 

  20. J. R. Klauder: The action option and a Feynman quantization of spinor fields in terms of ordinary c-numbers. Annals of Physics 11, 123–168 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. J. R. Klauder: Restricted variations of the quantum mechanical action functional and their relation to classical dynamics. Helv. Phys. Acta 35, 333–335 (1962).

    MATH  Google Scholar 

  22. J. R. Klauder: Continuous-representation theory. I. Postulates of continuous-representation theory. J. Math. Phys. 4, 1055–1058 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. J. R. Klauder: Continuous-representation theory. II. Generalized relation between quantum and classical dynamics. J. Math. Phys. 4, 1058–1073 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  24. J. R. Klauder: Weak correspondence principle. J. Math. Phys. 8, 2392–2399 (1967).

    Article  ADS  Google Scholar 

  25. J. R. Klauder: The fusion of classical and quantum theory. Preprint of a Lecture presented at the “Conference on Quantum Theory and the Structures of Time and Space”, Tutzing, West Germany, July, 1980. (1980).

    Google Scholar 

  26. J. R. Klauder: Coherent-state path integrals for unitary group representations. In: Proceedings of 14th ICGTMP. Ed. by Y. M. Cho. Singapore. World Scientific. 1986. Pp. 15–23.

    Google Scholar 

  27. J. R. Klauder and B.-S. Skagerstam: Coherent States. Applications in Physics and Mathematical Physics. Singapore. World Scientific. 1985.

    MATH  Google Scholar 

  28. J. R. Klauder and E. C. G. Sudarshan: Fundamentals of Quantum Optics. New York. Benjamin. 1968.

    Google Scholar 

  29. B. O. Koopman: Hamiltonian systems and transformations in Hilbert space. Proc. Nat. Acad. Sci. U.S. 17, 315–318 (1931).

    Article  ADS  Google Scholar 

  30. P. Kramer and M. Saraceno: Geometry of the Time-Dependent Variational Principle in Quantum Mechanics. Berlin. Springer. 1981.

    Book  MATH  Google Scholar 

  31. L. D. Landau and E. Lifshitz: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjet. 8, 153 (1935).

    MATH  Google Scholar 

  32. E. L. Lukacs: Characteristic Functions. London. Griffin. 1970.

    MATH  Google Scholar 

  33. G. W. Mackey: The Mathematical Foundations of Quantum Mechanics. New York. Benjamin. 1963.

    MATH  Google Scholar 

  34. L. Mandel and E. Wolf: Selected Papers on Coherence and Fluctuations of Light, Vol. 1, 1850–1960, Vol. 2, 1961–1966. New York. Dover. 1970.

    Google Scholar 

  35. P. M. Morse and H. Feshbach: Methods of Theoretical Physics. New York. McGraw-Hill. 1953.

    MATH  Google Scholar 

  36. J. v. Neumann: Mathematische Grundlagen der Quantenmechanik. Berlin. Springer. 1932.

    MATH  Google Scholar 

  37. L. Onsager: Electric moments of molecules in liquids. J. Amer. Chem. Soc. 58, 1486–1493 (1936).

    Article  Google Scholar 

  38. W. Pauli: Die allgemeinen Prinzipien der Wellenmechanik. In: Handbuch der Physik. Ed. by H. Geiger and K. Scheel. Second ed.. Berlin. Springer. 1933.

    Google Scholar 

  39. A. Perelomov: Generalized Coherent States and Their Applications. Berlin. Springer. 1986.

    MATH  Google Scholar 

  40. A. M. Perelomov: Coherent states for arbitrary Lie groups. Commun. Math. Phys. 26, 222–236 (1972).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. A. Peres: Nonlinear variants of Schrödinger’s equation violate the second law of thermodynamics (with a reply by S. Weinberg). Phys. Rev. Lett. 63, 1114–1115 (1989).

    Article  ADS  Google Scholar 

  42. M. Planck: Vorlesungen über die Theorie der Wärmestrahlung. Leipzig. Barth. 1906.

    MATH  Google Scholar 

  43. M. Planck:English translation: Theory of Heat Radiation. New York. Dover. 1959.

    MATH  Google Scholar 

  44. H. Primas: Mathematical and philosophical questions in the theory of open and macroscopic quantum systems. In: Sixty-two Years of Uncertainty: Historical, Philosophical and Physics Inquiries into the Foundations of Quantum Mechanics. Ed. by A. I. Miller. New York. Plenum. 1990.

    Google Scholar 

  45. K. Przibram: Briefe zur Wellenmechanik. Schrödinger, Planck, Einstein, Lorentz. Wien. Springer. 1963.

    Google Scholar 

  46. G. A. Raggio: States and Composite Systems in W*-algebraic Quantum Mechanics. Thesis ETH Zürich, No. 6824, ADAG Administration & Druck AG, Zürich. 1981.

    Google Scholar 

  47. G. A. Raggio and H. Primas: Remarks on “On completely positive maps in generalized quantum dynamics”. Foundations of Physics 12, 433–435 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  48. G. Rosen: Linear correspondents of nonlinear equations. Lett. Nuovo Cimento 20, 617–618 (1977).

    Article  MathSciNet  Google Scholar 

  49. D. J. Rowe: Constrained quantum mechanics and coordinate independent theory of the collective path. Nucl. Phys. A391, 307–326 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  50. D. J. Rowe, A. Ryman and G. Rosensteel: Many-body quantum mechanics as a symplectic dynamical system. Phys. Rev. A22, 2362–2373 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  51. D. J. Rowe, M. Vassanji and G. Rosensteel: Density dynamics: A generalization of Hartree-Fock theory. Phys. Rev. A28, 1951–1956 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  52. S. Sakai: C*-Algebras and W*-Algebras. Berlin. Springer. 1971.

    Google Scholar 

  53. E. Schrödinger: Der stetige Übergang von der Mikro- zur Makromechanik. Naturwissenschaften 14, 644–666 (1926).

    Article  Google Scholar 

  54. H. P. Stapp: Exact solution of the infrared problem. Phys. Rev. D28, 1386–1418 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  55. H. P. Stapp: On the unification of quantum theory and classical physics. In: Symposium on the Foundations of Modern Physics. Ed. by P. Lathi and P. Mittelstaedt. Singapore. World Scientific. 1985.

    Google Scholar 

  56. M. Takesaki: Theory of Operator Algebras I. New York. Springer. 1979.

    Book  MATH  Google Scholar 

  57. W. Ulmer and H. Hartmann: On the application of a Gauss transformation in nonlinear quantum mechanics. Nuovo Cimento 47A, 359–376 (1978).

    MathSciNet  ADS  Google Scholar 

  58. J. Waniewski: Mobility and measurements in nonlinear wave mechanics. J. Math. Phys. 27, 1796–1799 (1986).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. E. Wong and M. Zakai: On the convergence of ordinary integrals to stochastic integrals. Ann. Math. Statist. 36, 1560–1564 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  60. E. Wong and M. Zakai: On the relation between ordinary and stochastic differential equations. Internat. J. Engrg. Sci. 3, 213–229 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  61. S. Yomosa: Nonlinear Schrödinger equation on the molecular complex in solution. J. Phys. Soc. Japan 35, 1738–1746 (1973).

    Article  ADS  Google Scholar 

  62. H. D. Zeh: On the interpretation of measurement in quantum theory. Foundations of Physics 1, 69–76 (1970).

    Article  ADS  Google Scholar 

  63. H. D. Zeh: On the irreversibility of time and observation in quantum theory. In: Proceedings of the International School of Physics “Enrico Fermi”, Course 49. Foundations of Quantum Mechanics. Ed. by B. d’Espagnat. New York. Academic Press. 1971. Pp. 263–273.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Primas, H. (1990). Induced Nonlinear Time Evolution of Open Quantum Objects. In: Miller, A.I. (eds) Sixty-Two Years of Uncertainty. NATO ASI Series, vol 226. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8771-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8771-8_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8773-2

  • Online ISBN: 978-1-4684-8771-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics