Skip to main content

P-Elements and Quantitative Variation in Drosophila

  • Chapter
Ecological and Evolutionary Genetics of Drosophila

Part of the book series: Monographs in Evolutionary Biology ((MEBI))

Abstract

Mutation is ultimately the source of all evolutionary change. For this reason, much effort has been expended in understanding the nature of mutational changes and in attempting to measure and predict the consequences of variation in rates of mutation on levels of genetic variation and consequent evolutionary rates. The early studies of Clayton and Robertson (1955) suggested that mutation has little effect on response to selection, as did other attempts at manipulating mutation rates using radiation as the mutagenic agent (Clayton and Robertson, 1964; Hollingdale and Barker, 1971; Kitagawa, 1967) in order to experimentally modify evolutionary rates. In general, such studies were relatively disappointing in that the levels of enhancement of genetic variation and rates of evolution were quite small, presumably because of the deleterious effects associated with the radiation-induced mutations. As a practical means of enhancing rates of evolution and genetic improvement in domestic plants and animals, “mutation breeding” using radiation as the mutagenic source has fallen into disfavour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Black, D.M., Jackson, M.S., Kidwell, M.G., and Dover, G.A., 1987, KP element accumulation represses hybrid dysgenesis in D. melanogaster, EMBO J. 6:4125–4135.

    PubMed  CAS  Google Scholar 

  • Bingham, P.M., Kidwell, M.G., and Rubin, G.M., 1982, The molecular basis of P-M hybrid dysgenesis: the role of the P element, a P-strain-specific transposon family, Cell 29:995–1004.

    Article  PubMed  CAS  Google Scholar 

  • Bregliano, J.C., and Kidwell, M.G., 1983, Hybrid dysgenesis determinants, in: Mobile Genetic Elements (J.A. Shapiro, ed.), Academic Press, London and New York, pp. 363–410.

    Google Scholar 

  • Clayton, G.A., and Robertson, A., 1955, Mutation and quantitative variation, Am. Nat. 89:151–158.

    Article  Google Scholar 

  • Clayton, G.A., and Robertson, A., 1964, The effect of X-rays on quantitative characters, Genet. Res. 5:410–422.

    Article  Google Scholar 

  • Daniels, S.B., Clark, S.H., Kidwell, M.G., and Chovnick, A., 1987, Genetic transformation of Drosophila melanogaster with an autonomous P element: phenotypic and molecular analyses of long established transformed lines, Genetics 115:711–723.

    PubMed  CAS  Google Scholar 

  • Eanes, W.F., Wesley, C., Hey, J., Houle, D., and Ajioka, J.W., 1988, The fitness consequences of P element insertion in Drosophila melanogaster,Genet. Res. 52:17–26.

    Article  Google Scholar 

  • Engels, W.R., 1979, Hybrid dysgenesis in Drosophila melanogaster: rules of inheritance of female sterility, Genet. Res. 33:219–236.

    Article  Google Scholar 

  • Engels, W.R., 1983, The P family of transposable elements in Drosophila,A. Rev. Genet. 17:315–344.

    Article  CAS  Google Scholar 

  • Engels, W.R., 1986, On the evolution and population genetics of hybrid-dysgenesis-causing transposable elements in Drosophila,Phil. Trans. R. Soc. B 312:205–215.

    Article  PubMed  CAS  Google Scholar 

  • Engels, W.R., and Preston, C.R., 1984, Formation of chromosomal rearrangements by P factors in Drosophila melanogaster,Genetics 107:657–678.

    PubMed  CAS  Google Scholar 

  • Fitzpatrick, G.J., and Sved, J.A., 1986, High levels of fitness modifiers induced by hybrid dysgenesis in Drosophila melanogaster,Genet. Res. 48:89–94.

    Article  Google Scholar 

  • Frankham, R., 1980, Origin of genetic variation in selection lines, in: Selection Experiments in Laboratory and Domestic Animals (A. Robertson, ed.), Commonwealth Agricultural Bureaux, Slough, pp. 56–68.

    Google Scholar 

  • Harcourt, R., 1987, Molecular and genetic characterisation of a P element insertion in Drosophila melanogaster, Unpublished B.Sc.Agr. thesis, University of Sydney.

    Google Scholar 

  • Hill, W.G., 1982a, Rate of change in quantitative traits from fixation of new mutations, Proc. natn. Acad. Sci. USA 79:142–145.

    Article  CAS  Google Scholar 

  • Hill, W.G., 1982b, Prediction of response to artificial selection from new mutations, Genet. Res. 40:225–278.

    Article  Google Scholar 

  • Hollingdale, B., and Barker, J.S.F., 1971, Selection for increased abdominal bristle number in Drosophila melanogaster with concurrent irradiation. I. Populations derived from an inbred line, Theor. & Appl. Genet. 41:208–215.

    Google Scholar 

  • Junakovic, N., Di Franco, C., Barsanti, P., and Palumbo, G., 1986, Transposition of Copia-like nomadic elements can be induced by heat shock, J. Mol. Evol. 24:89–93.

    Article  CAS  Google Scholar 

  • Keightley, P.D., and Hill W.G., 1983, Effects of linkage on response to directional selection from new mutations, Genet. Res. 42:193–206.

    Article  PubMed  CAS  Google Scholar 

  • Keightley, P.D., and Hill W.G., 1987, Directional selection and variation in finite populations, Genetics 117:573–582.

    PubMed  CAS  Google Scholar 

  • Keightley, P.D., and Hill W.G., 1988, Quantitative genetic variability maintained by mutation-stabilising selection balance in finite populations, Genet. Res. 52:33–43.

    Article  PubMed  CAS  Google Scholar 

  • Kidwell, M.G., Kidwell, J.F., and Sved, J.A., 1977, Hybrid dysgenesis in Drosophila melanogaster: a syndrome of aberrant traits including mutation, sterility and male recombination, Genetics 86:813–833.

    PubMed  CAS  Google Scholar 

  • Kimura, M., 1985, The neutral theory of molecular evolution, New Scientist 107:43–46.

    Google Scholar 

  • Kitagawa, O., 1967, The effects of X-ray irradiation on selection response in Drosophila melanogaster,Jap. J. Genet. 42:121–137.

    Article  Google Scholar 

  • Lande, R., 1975, The maintenance of genetic variability by mutation in a polygenic character with linked loci, Genet. Res. 26:221–235.

    Article  PubMed  CAS  Google Scholar 

  • Laski, F.A., Rio, D.C., and Rubin, G.M., 1986, Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing, Cell 44:7–19.

    Article  PubMed  CAS  Google Scholar 

  • Lindsley, D.L., and Grell, E.H., 1968, Genetic Variations of Drosophila melanogaster, Carnegie Institute of Washington, Publication no. 627.

    Google Scholar 

  • Lynch, M., 1988, The rate of polygenic mutation, Genet. Res. 51:137–148.

    Article  PubMed  CAS  Google Scholar 

  • Mackay, T.F.C., 1984, Jumping genes meet abdominal bristles: hybrid dysgenesis-induced quantitative variation in Drosophila melanogaster,Genet. Res. 44:231–237.

    Article  Google Scholar 

  • Mackay, T.F.C., 1985, Transposable element-induced response to artificial selection in Drosophila melanogaster,Genetics 111:351–374.

    PubMed  CAS  Google Scholar 

  • Mackay, T.F.C., 1986, Transposable element-induced fitness mutations in Drosophila melanogaster,Genet. Res. 48:77–87.

    Article  Google Scholar 

  • Mackay, T.F.C., 1987a, Transposable element-induced polygenic mutations in Drosophila melanogaster,Genet. Res. 49:225–233

    Article  Google Scholar 

  • Mackay, T.F.C., 1987b, Transposable element-induced quantitative genetic variation in Drosophila, in: Proceedings of the Second International Conference on Quantitative Genetics (B.S. Weir, E.J. Eisen, M.M. Goodman, and G. Namkoong, eds), Sinauer, Sunderland, Mass., pp. 219–235.

    Google Scholar 

  • McClintock, B., 1978, Mechanisms that rapidly reorganise the genome, in: Stadler Symposium, Vol. 10, (G.P. Reder, ed.), Columbia, Mo., pp. 25–48.

    Google Scholar 

  • Morton, R.L., 1988, Genetic characterisation of a high bristle line of Drosophila melanogaster produced under selection in a dysgenic cross, Unpublished B.Sc.Agr. thesis, University of Sydney.

    Google Scholar 

  • Mukai, T., and Yukuhiro, K., 1983, An extremely high rate of deleterious viability mutations in Drosophila possibly caused by transposons in non-coding regions, Jap. J. Genet. 59:316–319.

    Google Scholar 

  • Nitasaka, E., Mukai, T., and Yamazaki, T., 1987, Repressor of P elements in Drosophila melanogaster: Cytotype determination by a defective P element carrying only open reading frames 0 through 2, Proc. natn. Acad. Sci. USA 84:7605–7608.

    Article  CAS  Google Scholar 

  • O’Hare, K., and Rubin, G.M., 1983, Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome, Cell 34:25–35.

    Article  PubMed  Google Scholar 

  • Palmer, A.R., and Strobeck, C., 1986, Fluctuating asymmetry: measurement, analysis, patterns, Annu. Rev. Ecol. & Syst. 17:391–421.

    Article  Google Scholar 

  • Rio, D.C., 1988, P elements in Drosophila melanogaster: their molecular biology and use as vector systems, in: Transposition (A. J. Kingsman, K. F. Chater, and S. M. Kingsman, eds), Cambridge University Press, Cambridge, pp. 287–300.

    Google Scholar 

  • Rubin, G.M., Kidwell, M.G., and Bingham, P.M., 1982, The molecular basis of P-M hybrid dysgenesis: the nature of induced mutations, Cell 29:987–994.

    Article  PubMed  CAS  Google Scholar 

  • Simmons, M.J., Raymond, J.D., Culbert, P., and Laverty, T.R., 1984, Analysis of dysgenesis induced lethal mutations on the X chromosome of a Q strain of Drosophila melanogaster,Genetics 107:49–63.

    PubMed  CAS  Google Scholar 

  • Simmons, M.J., Raymond, J.D., Johnson, N.A., and Fahey, T.M., 1984, A comparison of mutation rates for specific loci and chromosome regions in dysgenic hybrid males of Drosophila melanogaster,Genetics 106:85–94.

    PubMed  CAS  Google Scholar 

  • Snyder, M., and Doolittle, W.F., 1988, P elements in Drosophila: selection at many levels, Trends Genet. 4:147–149.

    Article  PubMed  CAS  Google Scholar 

  • Spradling, A.C., and Rubin, G.M., 1982, Transposition of cloned P elements into Drosophila germ line chromosomes, Science 218:341–347.

    Article  PubMed  CAS  Google Scholar 

  • Torkamanzehi, A., Moran, C., and Nicholas, F.W., 1988, P element-induced mutation and quantitative variation in Drosophila melanogaster: lack of enhanced response to selection in lines derived from dysgenic crosses, Genet. Res., 51:231–238.

    Article  Google Scholar 

  • Voelker, R.A., Greenleaf, A., Gyurkovics, H., Wisely, G., Huang, S., and Searles, L., 1984, Frequent imprecise excision among reversions of P element-caused lethal mutations in Drosophila,Genetics 107:279–294.

    PubMed  CAS  Google Scholar 

  • Yukuhiro, K., Harada, K., and Mukai, T., 1985, Viability mutations induced by P elements in Drosophila melanogaster,Jap. J. Genet. 60:531–537.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moran, C., Torkamanzehi, A. (1990). P-Elements and Quantitative Variation in Drosophila. In: Barker, J.S.F., Starmer, W.T., MacIntyre, R.J. (eds) Ecological and Evolutionary Genetics of Drosophila . Monographs in Evolutionary Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8768-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8768-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8770-1

  • Online ISBN: 978-1-4684-8768-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics