Skip to main content

Extreme Environmental Stress: Asymmetry, Metabolic Cost and Conservation

  • Chapter
Ecological and Evolutionary Genetics of Drosophila

Part of the book series: Monographs in Evolutionary Biology ((MEBI))

Abstract

Fisher (1930) in The Genetical Theory of Natural Selection wrote “If therefore an organism be really in any high degree adapted to the place it fills in the environment, this adaptation will be constantly menaced by any undirected agencies liable to cause changes to either party in the adaptation”. In using this quote in an article on Genetics of resistance to environmental stresses in Drosophila populations, (Parsons, 1973), I then added that “Environmental stresses of a man-made type are going to assume progressively more prominence with time, especially as they can be regarded as rather more ‘directed’ than Fisher’s ‘undirected’ agencies.” At that time, the main ‘directed’ agency consisted of various chemicals such as insecticides. Now we have a far more insidious scene comprising increased concentration of C02 and less-abundant atmospheric gases including chloro-fluorocarbons (CFCs), all implying substantial exchange of materials between terrestrial systems and the atmosphere (Mooney et al., 1987). The impact of CFCs is a likely depletion of stratospheric O3 so diminishing its role as a protective absorber of short-wave radiation (Cicerone, 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkinson, D. E., 1977, Cellular Energy Metabolism and its Regulation, Academic Press, New York.

    Google Scholar 

  • Bouletreau, J., 1978, Ovarian activity and reproductive potential in a natural population of Drosophila melanogaster, Oecologia 33:319–342.

    Article  Google Scholar 

  • Boyer, J. S., 1982, Plant productivity and environment, Science 218:443–448.

    Article  PubMed  CAS  Google Scholar 

  • Burt, R. L., Reid, R., and Williams, W. T., 1975, Exploration for, and utilization of, collections of tropical pasture legumes, Agro-Ecosystems 2:293–307.

    Article  Google Scholar 

  • Busby, J. R., 1986, Bioclimate prediction system. Users Manual, Bureau of Flora and Fauna, Canberra.

    Google Scholar 

  • Cicerone, R. J., 1987, Changes in stratospheric ozone, Science 237:35–42.

    Article  PubMed  CAS  Google Scholar 

  • Clare, M. J., and Luckinbill, L. S., 1985, The effects of gene-environment interaction on the expression of longevity, Heredity 55:19–29.

    Article  PubMed  Google Scholar 

  • Fisher, R. A., 1930, The Genetical Theory of Natural Selection, Clarendon Press, Oxford.

    Google Scholar 

  • Forman, R. T. T., 1964, Growth under controlled conditions to explain the hierarchical distributions of a moss, Tetraphis pellucida, Ecol. Monogr. 34:1–25.

    Article  Google Scholar 

  • Frisch, J. E., 1981, Changes occurring in cattle as a consequence of selection for growth rate in a stressed environment, J. agric. Sci., Camb. 96:23–38.

    Article  Google Scholar 

  • Hinrichsen, D., 1986, Multiple pollutants and forest decline, Ambio 15:258–265.

    Google Scholar 

  • Hochachka, P. W., and Somero, G. N., 1984, Biochemical Adaptation, Princeton University Press, Princeton.

    Google Scholar 

  • Hoffmann, A. A., and Parsons, P. A., 1989a, An integrated approach to environmental stress tolerance and life-history variation: Desiccation tolerance in Drosophila, Biol. J. Linn. Soc. 37:117–136.

    Article  Google Scholar 

  • Hoffmann, A. A., and Parsons, P. A., 1989b, Selection for increased desiccation resistance in Drosophila melanogaster: Additive genetic control and correlated responses to other stresses, Genetics (in press).

    Google Scholar 

  • Hoffmann, A. A., and Parsons, P. A., 1990, Evolutionary Genetics and Environmental Stress, (in preparation).

    Google Scholar 

  • Ivanovici, A. M., and Wiebe, W. J., 1981, Towards a working ‘definition’ of stress: a review and critique, in: Stress Effects on Natural Ecosystems (G. W. Barrett, and R. Rosenberg, eds), John Wiley, New York, pp. 13–27.

    Google Scholar 

  • Lints, F. A., Stoll, J., Gruwez, G., and Lints, C. V., 1979, An attempt to select for increased longevity in Drosophila melanogaster, Gerontology 25:192–204.

    Article  PubMed  CAS  Google Scholar 

  • Luckinbill, L. S., and Clare, M. J., 1985, Selection for life span in Drosophila melanogaster, Heredity 55:9–18.

    Article  PubMed  Google Scholar 

  • Mather, K., 1953, Genetical control of stability in development, Heredity 7:297–336.

    Article  Google Scholar 

  • McKenzie, J. A., and Clarke, G. M., 1988, Diazinon resistance, fluctuating asymmetry and fitness in the Australian sheep blowfly, Lucilia cuprina, Genetics 120:213–220.

    PubMed  CAS  Google Scholar 

  • Mooney, H. A., Vitousek, P. M., and Matson, P. A., 1987, Exchange of materials between terrestrial ecosystems and atmosphere, Science 238:926–932.

    Article  PubMed  CAS  Google Scholar 

  • Odum, E. P., Finn, J. T., and Franz, E., 1979, Perturbation theory and the subsidy-stress gradient, Bioscience 29:349–352.

    Article  Google Scholar 

  • Oppenoorth, F. J., 1985, Biochemistry and genetics of insecticide resistance, in: Comprehensive Insect Physiology, Biochemistry and Pharmacology (G. A. Kerkut, and I. L. Gilbert, eds), Pergamon Press, Oxford, pp. 731–773.

    Google Scholar 

  • Osmond, C. B., Austin, M. P., Berry, J. A., Billings, W. D., Boyer, J. S., Dacey, J. W. H., Nobel, P. S., Smith, S. D., and Winner, W. E., 1987, Stress physiology and the distribution of plants, Bioscience 37:38–48.

    Article  Google Scholar 

  • Palmer, A. R., and Strobeck, C., 1986, Fluctuating symmetry: measurement, analysis, patterns, Annu. Rev. Ecol. & Syst. 17:391–421.

    Article  Google Scholar 

  • Parsons, P. A., 1961, Fly size, emergence time and sternopleural chaeta number in Drosophila, Heredity 16:455–473.

    Article  Google Scholar 

  • Parsons, P. A., 1962, Maternal age and developmental variability, J. exp. Biol. 39:251–260.

    PubMed  CAS  Google Scholar 

  • Parsons, P. A., 1973, Genetics of resistance to environmental stresses in Drosophila populations, A. Rev. Genet. 7:239–265.

    Article  CAS  Google Scholar 

  • Parsons, P. A., 1980, Isofemale strains and evolutionary strategies in natural populations, Evol. Biol. 13:175–217.

    Article  Google Scholar 

  • Parsons, P. A., 1981, The evolutionary ecology of Australian Drosophila: a species analysis, Evol. Biol. 14:297–350.

    Google Scholar 

  • Parsons, P. A., 1985, Tropical Drosophila: resistance to environmental stresses and species diversity, Proc. Ecol. Soc. Aust. 13:43–49.

    Google Scholar 

  • Parsons, P. A., 1987, Evolutionary rates under environmental stress, Evol. Biol. 21:311–347.

    Article  Google Scholar 

  • Parsons, P. A., 1988, Evolutionary rates: effects of stress upon recombination, Biol. J. Linn. Soc. 35:49–68.

    Article  Google Scholar 

  • Parsons, P. A., 1989, Environmental stresses and conservation of natural populations, Annu. Rev. Ecol. & Syst. (In press).

    Google Scholar 

  • Raup, D. M., and Boyajian, G. E., 1988, Patterns of generic extinction in the fossil record, Paleobiology 14:109–125.

    PubMed  CAS  Google Scholar 

  • Reeve, E. C. R., 1960, Some genetic tests on asymmetry of sternopleural chaeta number in Drosophila, Genet. Res. 1:151–172.

    Article  Google Scholar 

  • Robertson, F. W., 1960, The ecological genetics of growth in Drosophila I. Body size and development time on different diets, Genet. Res. 1:288–304.

    Article  Google Scholar 

  • Rose, M. R., 1984, Laboratory evolution of postponed senescence in Drosophila melanogaster, Evolution 38:1004–1009.

    Article  Google Scholar 

  • Schafer, T. H., and Hackney, C. T., 1987, Variation in adenylate energy charge and phosphoadenylate pool size in estuarine organisms after an oil spill, Bull. Environ. Contam. & Toxicol. 38:753–761.

    Article  Google Scholar 

  • Schmalhausen, I. I., 1949, Factors of Evolution, Blakiston Company, Philadelphia.

    Google Scholar 

  • Stanley, S. M., and Parsons, P. A., 1981, The response of the cosmopolitan species, Drosophila melanogaster to ecological gradients, Proc. Ecol.Soc. Aust. 11:121–130.

    Google Scholar 

  • Thoday, J. M., 1958, Homeostasis in a selection experiment, Heredity 12:401–415.

    Article  Google Scholar 

  • Waddington, C. H., 1953, Genetic assimilation of an acquired character, Evolution 7:118–126.

    Article  Google Scholar 

  • Waddington, C. H., 1956, Principles of Embryology, George Allen and Unwin, London.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Parsons, P.A. (1990). Extreme Environmental Stress: Asymmetry, Metabolic Cost and Conservation. In: Barker, J.S.F., Starmer, W.T., MacIntyre, R.J. (eds) Ecological and Evolutionary Genetics of Drosophila . Monographs in Evolutionary Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8768-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8768-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8770-1

  • Online ISBN: 978-1-4684-8768-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics