Skip to main content

Fitness and Asymmetry Modification as an Evolutionary Process A Study in the Australian Sheep Blowfly, Lucilia cuprina and Drosophila melanogaster

  • Chapter
Ecological and Evolutionary Genetics of Drosophila

Part of the book series: Monographs in Evolutionary Biology ((MEBI))

Abstract

Biologists have usually considered resistance to pesticides as an applied problem, albeit one of considerable importance. An ever increasing range of organisms have become resistant to chemical agents used in their control, adding to the costs of a number of industries (Georghiou, 1986). The future availability of effective new control agents is also a cause of concern (Metcalf, 1980; Hotson, 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abedi, Z. H., and Brown, A. W. A., 1960, Development and reversion of DDT-resistance in Aedes aegypti, Can. J. Genet. Cytol. 2:252–261.

    Google Scholar 

  • Amin, A. M., and White, G. B., 1984, Relative fitness of organophosphateresistant and susceptible strains of Culex quinquefasciatus Say (Diptera: Culicidae), Bull. ent. Res. 74:591–598.

    Article  Google Scholar 

  • Artavanis-Tsakonas, S., 1988, The molecular biology of the Notch locus and the fine tuning of differentiation in Drosophila, Trends Genet. 4:95–100.

    Article  CAS  Google Scholar 

  • Beeman, R. W., and Nanis, S. M., 1986, Malathionin resistance alleles and their fitness in the red flour beetle (Coleoptera: Tenebrionidae), J. econ. Ent. 79:580–587.

    CAS  Google Scholar 

  • Brown, A. W. A., and Pal, R., 1971, Insecticide Resistance in Arthropods, W.H.O., Geneva. Charlesworth, B., 1979, Evidence against Fisher’s theory of dominance, Nature, Lond. 278:848–849.

    Google Scholar 

  • Clarke, B., 1975, The contribution of ecological genetics to evolutionary theory: detecting the direct effects of natural selection on particular polymorphic loci, Genetics 79:101–113.

    PubMed  Google Scholar 

  • Clarke, G. M., and McKenzie, J. A., 1987, Developmental stability of insecticide resistant phenotypes in blowfly; a result of canalizing natural selection, Nature, Lond. 325:345–346.

    Article  CAS  Google Scholar 

  • Crow, J. F., 1957, Genetics of insect resistance to chemicals, A. Rev. Ent. 2:227–246.

    Article  CAS  Google Scholar 

  • Daly, J., and McKenzie, J. A., 1986, Resistance management strategies in Australia: The Heliothis and “Wormkill” programmes, in; Pests and Diseases, BCPC, Brighton (U.K.), pp. 951–959.

    Google Scholar 

  • Fisher, R. A., 1958, The Genetical Theory of Natural Selection, 2nd ed., Dover, New York.

    Google Scholar 

  • Foster, G. G., Whitten, M. J., Konovalov, C., Arnold, J. T. A., and Maffi, G., 1981, Autosomal genetic maps of the Australian sheep blowfly, Lucilia cuprina dorsalis R-D (Diptera: Calliphoridae) and possible correlations with the linkage maps of Musca domestica L. and Drosophila melanogaster (Mg.), Genet. Res. 37:55–69.

    Article  Google Scholar 

  • Georghiou, G. P., 1972, The evolution of resistance to pesticides, Annu. Rev. Ecol. & Syst. 3:133–168.

    Article  CAS  Google Scholar 

  • Georghiou, G. P., 1983, Management of resistance in arthropods, in: Pest Resistance to Pesticides (G. P. Georghiou, and T. Saito, eds), Plenum, New York, pp. 769–792.

    Chapter  Google Scholar 

  • Georghiou, G. P., 1986, The magnitude of the resistance problem, in: Pesticide Resistance: Strategies and Tactics for Management, National Academy Press, Washington, D.C., pp. 14–43.

    Google Scholar 

  • Hartley, D. A., Preiss, A., and Artavanis-Tsakonas, S., 1988, A deduced gene product from the Drosophila neurogenic locus, Enhancer of split, shows homology to mammalian G-protein B subunit, Cell 55:785–795.

    Article  PubMed  CAS  Google Scholar 

  • Helle, W., 1965, Resistance in the acarina: mites, Adv. Acarol. 2:71–93.

    CAS  Google Scholar 

  • Hotson, I. K., 1985, New developments in nematode control: the role of the animal health products industry, in: Resistance in Nematodes to Anthelmintic Drugs (N. Anderson, and P. J. Walker, eds), CSIRO, Aust. Wool Corp., Sydney, pp. 117–125.

    Google Scholar 

  • Hughes, P. B., and Devonshire, A. L., 1982, The biochemical basis of resistance to organophosphorus insecticides in the sheep blowfly, Lucilia cuprina, Pestic. Biochem. & Physiol. 18:289–297.

    Article  CAS  Google Scholar 

  • Hughes, P. B., and Raftos, D. A., 1985, Genetics of an esterase associated with resistance to organophosphorus insecticides in the sheep blowfly, Lucilia cuprina (Wiedemann)(Diptera: Calliphoridae), Bull. ent. Res. 75:535–544.

    Article  CAS  Google Scholar 

  • Jones, J. S., 1987, An asymmetrical view of fitness, Nature, Lond. 325:298–299.

    Article  Google Scholar 

  • Kidd, S., and Young, M. W., 1986, Transposon-dependent mutant phenotypes at the Notch locus of Drosophila, Nature, Lond. 323:89–91.

    Article  CAS  Google Scholar 

  • Leary, R. F., Allendorf, F. W., and Knudsen, K. L., 1984, Superior developmental stability of heterozygotes at enzyme loci in salmonid fishes, Am. Nat. 124:540–551.

    Article  Google Scholar 

  • Lenski, R. E., 1988, Experimental studies of pleiotropy and epistasis in Escherichia coli. II. Compensation for maladaptive effects associated with resistance to virus T4, Evolution 42:433–440.

    Article  Google Scholar 

  • Lerner, I. M., 1954, Genetic Homeostasis, Wiley, New York.

    Google Scholar 

  • Maddern, R. J., Foster, G. G., Whitten, M. J., Clarke, G. M., Konovalov, C. A., Arnold, J. T. A., and Maffi, G., 1986, The genetic mutations of Lucilia cuprina R.-D. (Diptera: Calliphoridae), CSIRO, Div. Entomol. Report No. 37, Canberra.

    Google Scholar 

  • Martin, P. J., McKenzie, J. A., and Stone, R. A., 1988, The inheritance of thiabendazole resistance in Trichostrongylus coluhriformis, Int. J. Parasitol. 18:703–709.

    Article  CAS  Google Scholar 

  • Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., Lande, R., Raup, D., and Wolpert, L., 1985, Developmental constraints and evolution, Q. Rev. Biol. 60:266–287.

    Google Scholar 

  • McEnroe, W. D., and Naegele, J. A., 1968, The coadaptive process in an organophosphorus-resistant strain of the two-spotted spider mite, Tetranychus urticae, Ann. ent. Soc. Am. 61:1055–1059.

    Google Scholar 

  • McKenzie, J. A., 1985, Genetics of resistance to chemotherapeutic agents, in: Resistance in Nematodes to Anthelmintic Drugs (N. Anderson, and P. J. Waller, eds), CSIRO, Aust. Wool Corp., Sydney, pp. 89–95.

    Google Scholar 

  • McKenzie, J. A., 1987, Insecticide resistance in the Australian sheep blowfly — messages for pesticide usage, Chem. Ind. 8:266–269.

    Google Scholar 

  • McKenzie, J. A., and Clarke, G. M., 1988, Diazinon resistance, fluctuating asymmetry and fitness in the Australian sheep blowfly, Lucilia cuprina, Genetics 120:213–220.

    CAS  Google Scholar 

  • McKenzie, J. A., and Game, A. Y., 1987, Diazinon resistance in Lucilia cuprina: mapping of a fitness modifier, Heredity 59:381–391.

    Article  Google Scholar 

  • McKenzie, J. A., and Purvis, A., 1984, Chromosomal localisation of fitness modifiers of diazinon resistance genotypes of Lucilia cuprina, Heredity 53:625–634.

    Article  Google Scholar 

  • McKenzie, J. A., and Whitten, M. J., 1982, Selection for insecticide resistance in the Australian sheep blowfly, Lucilia cuprina, Experientia 38:84–85.

    Article  CAS  Google Scholar 

  • McKenzie, J. A., and Whitten, M. J., 1984, Estimation of relative viabilities of insecticide resistance genotypes of the Australian sheep blowfly, Lucilia cuprina, Aust. J. hiol. Sci. 37:45–52.

    CAS  Google Scholar 

  • McKenzie, J. A., Dearn, J. M., and Whitten, M. J., 1980, Genetic basis of resistance to diazinon in Victorian populations of the Australian sheep blowfly, Lucilia cuprina, Aust. J. hiol. Sci. 33:85–95.

    CAS  Google Scholar 

  • McKenzie, J. A., Whitten, M. J., and Adena, M. A., 1982, The effect of genetic background on the fitness of diazinon resistance genotypes of the Australian sheep blowfly, Lucilia cuprina, Heredity 49:1–9.

    Article  Google Scholar 

  • Metcalf, R. L., 1980, Changing role of insecticides in crop protection, A. Rev. Ent. 25:219–256.

    Article  CAS  Google Scholar 

  • Modi, W. S., Wayne, R. K., and O’Brien, S. J., 1987, Analysis of fluctuating asymmetry in cheetahs, Evolution 41:227–228.

    Article  Google Scholar 

  • Muggleton, J., 1986, Selection for malathion resistance in Oryzaephilus surinamensis (L.) (Coleoptera: Silvanidae): fitness values of resistant and susceptible phenotypes and their inclusion in a general model describing the spread of resistance, Bull. ent. Res. 76:469–480.

    Article  Google Scholar 

  • Palmer, A. R., and Strobeck, C., 1986, Fluctuating asymmetry: measurement, analysis, patterns, Annu. Rev. Ecol. & Syst. 17:391–421.

    Article  Google Scholar 

  • Parsons, P. A., 1961, Fly size, emergence time and sternopleural chaeta number in Drosophila, Heredity 16:455–473.

    Article  Google Scholar 

  • Roush, R. T., and McKenzie, J. A., 1987, Ecological genetics of insecticide and acaricide resistance, A. Rev. Ent. 32:361–380.

    Article  CAS  Google Scholar 

  • Soulé, M., 1967, Phenetics of natural populations. II. Asymmetry and evolution in a lizard, Am. Nat. 101:141–160.

    Article  Google Scholar 

  • Swain, D. P., 1987, A problem with the use of meristic characters to estimate developmental stability, Am. Nat. 129:761–768.

    Article  Google Scholar 

  • Tabashnik, B. E., and Croft, B. A., 1982, Managing pesticide resistance crop-arthropod complexes: interactions between biological and operational factors, Environ. Entomol. 11:1137–1144.

    Google Scholar 

  • Van Valen, L., 1962, A study of fluctuating asymmetry, Evolution 16:125–142.

    Article  Google Scholar 

  • Waddington, C. H., 1957, The Strategy of the Genes, Allen and Unwin, London.

    Google Scholar 

  • Wayne, R. K., Modi, W. S., and O’Brien, S. J., 1986, Morphological variability and asymmetry in the cheetah (Acinonyx jubatus), a genetically uniform species, Evolution 40:78–85.

    Article  Google Scholar 

  • Whitehead, J. R., Roush, R. T., and Norment, B. R., 1985, Resistance stability and coadaptation in diazinon-resistant house flies (Diptera: Muscidae), J. econ. Ent. 78:25–29.

    CAS  Google Scholar 

  • Willig, M. R., and Owen, R. D., 1987, Fluctuating asymmetry in the cheetah: methodological and interpretive concerns, Evolution 41:225–227.

    Article  Google Scholar 

  • Whitten, M. J., and McKenzie, J. A., 1982, The genetic basis for pesticideresistance, Proc. 3rd Aust. Conf. Grassland Invertebrate Ecol., South Aust. Gov. Printer, Adelaide, pp. 1–16.

    Google Scholar 

  • Whitten, M. J., Dearn, J. M., and McKenzie, J. A., 1980, Field studies on insecticide resistance in the Australian sheep blowfly, Lucilia cuprina, Aust. J. biol. Sci. 33:725–735.

    CAS  Google Scholar 

  • Yedvobnick, B., Muskavitch, M. A. T., Wharton, K. A., Halpern, P. E., Grimwade, B. G., and Artavanis-Tsakonas, S., 1985, Molecular genetics of Drosophila neurogenesis, Cold Spring Harb. Symp. Quant. Biol. 50:841–854.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mckenzie, J.A., Batterham, P., Baker, L. (1990). Fitness and Asymmetry Modification as an Evolutionary Process A Study in the Australian Sheep Blowfly, Lucilia cuprina and Drosophila melanogaster. In: Barker, J.S.F., Starmer, W.T., MacIntyre, R.J. (eds) Ecological and Evolutionary Genetics of Drosophila . Monographs in Evolutionary Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8768-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8768-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8770-1

  • Online ISBN: 978-1-4684-8768-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics