Skip to main content

Physiology, Biochemistry and Molecular Biology of the Est-6 Locus in Drosophila melanogaster

  • Chapter
Ecological and Evolutionary Genetics of Drosophila

Part of the book series: Monographs in Evolutionary Biology ((MEBI))

Abstract

An understanding of the effect of natural selection on a particular locus often depends upon a detailed knowledge of the function of the locus. Indeed, a mechanistic understanding of the biochemical and physiological role(s) of a gene product can reveal complexities which are vital to a full comprehension of the myriad effects of selection. This view is well expressed in the following quotation from Watt (1985, p. 124) which has its origins in a research strategy advocated by Clarke (1975) and Koehn (1978).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldridge, W. N., and Reiner, E., 1972, Enzyme Inhibitors as Substrates, North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  • Anderson, P. R., and Oakeshott, J. G., 1984, Parallel geographic patterns of allozymic variation in two sibling Drosophila species, Nature, Lond. 308:729–731.

    Article  Google Scholar 

  • Bairati, A., 1968, Structure, and ultrastructure of the male reproductive system in Drosophila melanogaster Meig. 2. The genital duct and accessory glands, Monitore zool. ital. 2:105–182.

    Google Scholar 

  • Bell, J. B., MacIntyre, R. J., and Olivieri, A. P., 1972, Induction of null-activity mutants for the acid phosphatase-1 gene of Drosophila melanogaster, Biochem. Genet. 6:205–216.

    Article  PubMed  CAS  Google Scholar 

  • Birley, A. J., and Beardmore, J. A., 1977, Genetical composition, temperature, density and selection in an enzyme polymorphism, Heredity 39:133–144.

    Article  PubMed  CAS  Google Scholar 

  • Brady, J. P., Richmond, R. C., and Oakeshott, J. G., 1990, Cloning of the esterase-5 locus from Drosophila pseudoobscura and molecular analysis of interspecific evolutionary changes at this locus, Evolution (submitted).

    Google Scholar 

  • Cavener, D. R., and Clegg, M. T., 1981, Temporal stability of allozyme frequencies in a natural population of Drosophila melanogaster, Genetics 98:613–623.

    PubMed  CAS  Google Scholar 

  • Clarke, B., 1975, The contribution of ecological genetics to evolutionary theory: Detecting the direct effects of natural selection on particular loci, Genetics (Suppl.) 79:101–113.

    PubMed  Google Scholar 

  • Collet, C., Nielsen, K. M., Russell, R. J., Karl, M. J., Oakeshott, J. G., and Richmond, R. C., 1990, Molecular analysis of duplicated esterase genes in Drosophila melanogaster, Mol. Biol. Evol. (in press).

    Google Scholar 

  • Cooke, P. H., and Oakeshott, J. G., 1989, Amino acid polymorphisms for esterase-6 in Drosophila melanogaster, Proc. natn. Acad. Sci. USA 86:1426–1430.

    Article  CAS  Google Scholar 

  • Franklin, I. R., 1981, An analysis of temporal variation at isozyme loci in Drosophila melanogaster, in: Genetic Studies of Drosophila Populations (J. B. Gibson, and J. G. Oakeshott, eds), Australian National University Press, Canberra, pp. 217–236.

    Google Scholar 

  • Gilbert, D. G., 1981, Function and adaptive significance of esterase 6 allozymes in Drosophila melanogaster reproduction, Ph.D. Dissertation, Indiana University, Bloomington, Indiana.

    Google Scholar 

  • Gilbert, D. G., and Richmond, R. C., 1982a, Esterase 6 in Drosophila melanogaster: Reproductive function of active and null alleles at low temperature, Proc. natn. Acad. Sci. USA 79:2962–2966.

    Article  CAS  Google Scholar 

  • Gilbert, D. G., and Richmond, R. C., 1982b, Studies of esterase 6 in Drosophila melanogaster. XII. Evidence for temperature selection of Est 6 and Adh alleles, Genetica 58:109–119.

    Article  CAS  Google Scholar 

  • Gilbert, D. G., Richmond, R. C., and Sheehan, K. B., 1981a, Studies of esterase 6 in Drosophila melanogaster. V. Progeny production and sperm use in females inseminated by males carrying active or null alleles, Evolution 35:21–37.

    Article  CAS  Google Scholar 

  • Gilbert, D. G., Richmond, R. C., and Sheehan, K. B., 1981b, Studies of esterase 6 in Drosophila melanogaster. VII. The timing of remating in females inseminated by males having active or null alleles, Behav. Genet. 11:195–208.

    Article  PubMed  CAS  Google Scholar 

  • Hafen, E., and Levine, M., 1986, The localization of RNAs in Drosophila tissue sections by in situ hybridization, in: Drosophila A Practical Approach (D. B. Roberts, ed.), IRL Press, Oxford, pp. 139–174.

    Google Scholar 

  • Hartl, D., 1973, The mechanism of a brooding effect associated with segregation distortion in Drosophila melanogaster, Genetics 74:619–631.

    PubMed  CAS  Google Scholar 

  • Heyman, E., 1980, Carboxylesterases and amidases, in: Enzymatic Basis of Detoxification, Vol.2 (W. Jakoby, ed.), Academic Press, New York, pp. 291–323.

    Google Scholar 

  • Hudson, R. R., Kreitman, M., and Aguadé, M., 1987, A test of neutral molecular evolution based on nucleotide data, Genetics 116:153–159.

    PubMed  CAS  Google Scholar 

  • Iyengar, S. V., and Baker, R. M., 1962, The influence of temperature on the pattern of insemination by Drosophila males, Genetics 47:963–964.

    Google Scholar 

  • Johnson, F. M., Wallis, B. B., and Dennison, C., 1966, Recessive esterase deficiencies controlled by alleles of Est C and Est 6 in Drosophila melanogaster, Drosoph. Inf. Serv. 41:159.

    Google Scholar 

  • Kambysellis, M. P., 1984, A highly efficient method for collection of hemolymph, hemocytes, or blood-borne organisms from Drosophila and other small insects, Drosoph. Inf. Serv. 60: 219–220.

    Google Scholar 

  • Koehn, R. K., 1978, Physiology and biochemistry of enzyme variation: The interface of ecology and population genetics, in: Ecological Genetics: The Interface (P.F. Brussard, ed.), Springer-Verlag, New York, pp. 51–72.

    Chapter  Google Scholar 

  • Kojima, K-I., and Huang, S. L., 1972, Effects of population density on the frequency-dependent selection in the esterase-6 locus of Drosophila melanogaster, Evolution 26:313–321.

    Article  Google Scholar 

  • Langley, C. H., Voelker, A. J., Leigh-Brown, A., and Ohnishi, S., 1981, Null allele frequencies at allozyme loci in natural populations of Drosophila melanogaster, Genetics 99:151 – 156.

    PubMed  CAS  Google Scholar 

  • Lewontin, R. C., 1985, Population genetics, A. Rev. Genet. 19:81–102.

    Article  CAS  Google Scholar 

  • MacIntyre, R. J., and Wright, T. R. F., 1966, Response of esterase-6 alleles of Drosophila melanogaster and D. simulans to selection in experimental populations, Genetics 53:371–387.

    PubMed  CAS  Google Scholar 

  • Mane, S. D., Tepper, C. S., and Richmond, R. C., 1983, Purification and characterization of esterase 6, a polymorphic carboxylesterase of Drosophi1a melanogaster, Biochem. Genet.21:1019–1040.

    Article  PubMed  CAS  Google Scholar 

  • Manning, A., 1959, The sexual behavior of two sibling Drosophila species, Behaviour 15:123–145.

    Article  Google Scholar 

  • Meikle, D., Sheehan, K., Phillis, D., and Richmond, R. C., 1990, Studies of esterase 6 in Drosophila melanogaster. XIX. Localization and longevity of male derived enzyme in female hemolymph, J. Insect Physiol. (submitted).

    Google Scholar 

  • Mouches, C., Pasteur, N., Berge, J., Hyrien, O., Raymond, M., de Saint Vincent, B. R., de Silvestri, M., and Georghiou, G. P., 1986, Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito, Science 233:778–780.

    Article  PubMed  CAS  Google Scholar 

  • Myers, M., Richmond, R. C., and Oakeshott, J. G., 1988, On the origins of esterases, Mol. Biol. Evol. 5:113–119.

    PubMed  CAS  Google Scholar 

  • Oakeshott, J. G., Collet, C., Phillis, R. W., Nielson, K. M., Russell, R. J., Chambers, G. K., Ross, V., and Richmond, R. C., 1987, Molecular cloning and characterization of esterase 6, a serine hydrolase of Drosophila, Proc. natn. Acad. Sci. USA 84:3359–3363.

    Article  CAS  Google Scholar 

  • Oakeshott, J. G., Chambers, G. K., Gibson, J. B., and Willcocks, D. A., 1981, Latitudinal relationships of esterase 6 and phosphoglucomutase gene frequencies in Drosophila melanogaster, Heredity 47:385–396.

    Article  PubMed  CAS  Google Scholar 

  • Oakeshott, J. G., Wilson, S. R., and Knibb, W. R., 1988, Selection affecting enzyme polymorphisms in enclosed Drosophila populations maintained in a natural environment, Proc. natn. Acad. Sci. USA 85:293–297.

    Article  CAS  Google Scholar 

  • Parsons, P., 1973, Behavioral and Ecological Genetics, Oxford University Press, London.

    Google Scholar 

  • Peters, J., 1982, Nonspecific esterases of Mus musculus, Biochem. Genet. 20:585–606.

    Article  PubMed  CAS  Google Scholar 

  • Richards, A. G., 1963, The rate of sperm locomotion in the cockroach as a function of temperature, J. Insect Physiol. 9:545–549.

    Article  Google Scholar 

  • Richmond, R. C., 1972, Enzyme variability in the Drosophila willistoni group. III. Amounts of variability in the superspecies, D. paulistorum, Genetics 70:87–112.

    PubMed  CAS  Google Scholar 

  • Richmond, R. C., and Senior, A., 1981, Esterase 6 of Drosophila melanogaster: Kinetics of transfer to females, decay in females and male recovery, J. Insect Physiol. 27:849–853.

    Article  CAS  Google Scholar 

  • Richmond, R. C., Gilbert, D. G., Sheehan, K. B., Gromko, M. H., and Butterworth, F. M., 1980, Esterase 6 and reproduction in Drosophila melanogaster, Science 207:1483–1485.

    Article  PubMed  CAS  Google Scholar 

  • Riley, M. A., 1989, Nucleotide sequence of the Xdh region in Drosophila pseudoobscura and an analysis of the evolution of synonymous codons, Mol. Biol. Evol. 6:33–52.

    PubMed  CAS  Google Scholar 

  • Scott, D., 1986, Inhibition of female Drosophila melanogaster remating by a seminal fluid protein (esterase 6), Evolution 40:1084–1091.

    Article  CAS  Google Scholar 

  • Sheehan, K., Richmond, R. C., and Cochrane, B. J., 1979, Studies of esterase 6 in Drosophila melanogaster. III. The developmental pattern and tissue distribution, Insect Biochem. 9:443–450.

    Article  CAS  Google Scholar 

  • Simmons, G. M., Kreitman, M. E., Quattlebaum, W. F., and Miyashita, M., 1989, Molecular analysis of alleles of alcohol dehydrogenase along a cline in Drosophila melanogaster. I. Main, North Carolina, and Florida, Evolution 43:393–409.

    Article  Google Scholar 

  • Stein, S. P., Tepper, C. S., Able, N. D., and Richmond, R. C., 1984, Studies of esterase 6 in Drosophila melanogaster. XVI. Synthesis occurs in the male reproductive tract (anterior ejaculatory duct) and is modulated by juvenile hormone, Insect Biochem. 14:527–532.

    Article  CAS  Google Scholar 

  • Tepper, C. S., Richmond, R. C., Terry, A. L., and Senior, A., 1982, Esterase 6 in Drosophila melanogaster: Modification of Esterase 6 activity by unlinked genes, Genet. Res. 40:109–125.

    Article  CAS  Google Scholar 

  • Terranova, A. C., Leopold, R. A., Degrugillier, M. E., and Johnson, J. R., 1972, Electrophoresis of the male accessory secretion and its fate in the mated female, J. Insect. Physiol. 18:1573–1591.

    Article  PubMed  CAS  Google Scholar 

  • Van der Meer, R., Obin, M., Sheehan, K. S., Zawistowski, S., and Richmond, R., 1986, A reevaluation of the role of cis-vaccenyl acetate, cis vaccenyl alcohol and esterase 6 in the regulation of mated female sexual attractiveness in Drosophila melanogaster, J. Insect Physiol. 32:681–686.

    Article  Google Scholar 

  • Voelker, R. A., Langley, C. H., Leigh-Brown, A. J., Ohnishi, S., Dickson, B., Montgomery, E., and Smith, S. C., 1980, Enzyme null alleles in natural populations of Drosophila melanogaster: Frequencies in a North Carolina population, Proc. natn. Acad. Sci. USA 77:1091–1095.

    Article  CAS  Google Scholar 

  • Watt, W., 1985, Allelic isozymes and the mechanistic study of evolution, Isozymes. Current Topics in Biological & Medical Research 12:89–132.

    CAS  Google Scholar 

  • White, M. W., Mane, S. D., and Richmond, R. C., 1988, Studies of esterase-6 in Drosophila melanogaster. XVIII. Characterization of the slow and fast allozymes, Mol. Biol. Evol. 5:41–62.

    PubMed  CAS  Google Scholar 

  • Wright, T. R. F., 1963, The genetics of an esterase in Drosophila melanogaster, Genetics 48:787–801.

    PubMed  CAS  Google Scholar 

  • Yamazaki, T., 1971, Measurement of fitness at the Est-5 locus in Drosophila pseudoobscura, Genetics 67:579–603.

    PubMed  CAS  Google Scholar 

  • Plapp, F. W., 1988, Major role for a regulatory gene in metabolic resistance to insecticides in the house fly Musca domestica L. (Diptera: Muscidae), Abstract, XVIII International Congress of Entomology, Vancouver, July 3–9, p. 460.

    Google Scholar 

  • Plapp, F. W., and Wang, T. C., 1983, Genetic origins of insecticide resistance, in: Pest Resistance to Pesticides (G. P. Georghiou, and T. Saito, eds), Plenum, New York, pp. 47–70.

    Chapter  Google Scholar 

  • Raftos, D. A., 1986, The biochemical basis of malathion resistance in the sheep blowfly, Lucilia cuprina, Pestic. Biochem. & Physiol. 26:302–309.

    Article  CAS  Google Scholar 

  • Raftos, D. A., and Hughes, P. B., 1986, Genetic basis of a specific resistance to malathion in the Australian sheep blow fly, Lucilia cuprina (Diptera: Calliphoridae), J. econ. Ent. 79:553–557.

    CAS  Google Scholar 

  • Rossignol, D. P., 1988, Reduction in number of nerve membrane sodium channels in pyrethroid resistant house flies, Pestic. Biochem. & Physiol. 32:146–152.

    Article  CAS  Google Scholar 

  • Roush, R. T., and McKenzie, J. A., 1987, Ecological genetics of insecticide and acaricide resistance, A. Rev. Ent. 32:361–380.

    Article  CAS  Google Scholar 

  • Sattelle, D. B., Leech, C. A., Lummis, S. C. R., Harrison, B. J., Robinson, H. P. C., Moores, G. D., and Devonshire, A. L., 1988, Ion channel properties of insects susceptible and resistant to insecticides, in: Neurotox ‘88:Molecular Basis of Drug and Pesticide Action (G. G. Lunt, ed.), Elsevier, Amsterdam, pp. 563–582.

    Google Scholar 

  • Sawicki, R. W., 1985, Resistance to pyrethroid insecticides in arthropods, in: Insecticides (D. H. Hutson, and T. R. Roberts, eds), Wiley, New York, pp. 143–192.

    Google Scholar 

  • Sawicki, R. M., and Farnham, A. W., 1968a, Genetics of resistance to insecticides of the SKA strain of Musca domestica III. Location and isolation of the factors of resistance to dieldrin, Entomol. exp. Appl. 11:133–142.

    Article  CAS  Google Scholar 

  • Sawicki, R. M., and Farnham, A. W., 1968b, Examination of the isolated autosomes of the SKA strain of house flies (Musca domestica L) for resistance to several insecticides with and without pretreatment with sesamex and TBTP, Bull. ent. Res. 59:409–421.

    Article  Google Scholar 

  • Sawicki, R. M., Devonshire, A. L., Farnham, A. W., O’Dell, K. E., Moores, G. D., and Denholm, I., 1984, Factors affecting resistance to insecticides in house-flies, Musca domestica L. (Diptera: Muscidae). II. Close linkage on autosome 2 between an esterase and resistance to trichlorphon and pyrethroids, Bull. ent. Res. 74:197–206.

    Article  CAS  Google Scholar 

  • Soderlund, D. M., and Bloomquist, J. R., Molecular mechanisms of insecticide resistance, in: Pesticide Resistance in Arthropods (R. T. Roush, and B. E. Tabashnik, eds), Chapman and Hall, New York, (in press).

    Google Scholar 

  • Telakowski-Hopkins, C. A., Rodkey, J. A., Bennet, C. D., Lu, A. Y. H., and Pickett, C. B., 1985, Rat liver glutathione S-transferases. Construction of a cDNA clone complementary to a Yc mRNA and prediction of the complete amino acid sequence of a Yc subunit, J. biol. Chem. 260:5820–5825.

    Google Scholar 

  • Terras, M. A., Rose, H. A., and Hughes, P. B., 1983, Aldrin epoxidase activity in larvae of a susceptible and a resistant strain of the sheep blowfly, Lucila cuprina (Wiedemann), J. Aust. Entomol. Soc. 22:256.

    Article  Google Scholar 

  • Triantanphyllidis, C. D., and Christodoulou, C., 1973, Studies of a homologous gene-enzyme system, Esterase C., in Drosophila melanogaster and Drosophila simulans, Biochem. Genet. 8:383–390.

    Google Scholar 

  • Tsukamoto, M., 1983, Methods of genetic analysis of insecticide resistance, in: Pest Resistance to Pesticides (G. P. Georghiou, and T. Saito, eds), Plenum, New York, pp. 71–98.

    Chapter  Google Scholar 

  • Van Asperen, K., 1962, A study of house fly esterases by means of a sensitive colorimetric method, J. Insect Physiol. 8:401–416.

    Article  CAS  Google Scholar 

  • Van Asperen, K., and Oppenoorth, F. J., 1959, Organophosphate resistance and esterase activity in house flies, Entomol. exp. Appl., 2:48–57.

    Article  Google Scholar 

  • Waters, L. C., and Nix, C. E., 1988, Regulation of insecticide resistance — related cytochrome P-450 expression in Drosophila melanogaster, Pestic. Biochem. & Physiol. 30:214–227.

    Article  CAS  Google Scholar 

  • Wood, E. J., De Villar, M. I. P., and Zerba, E. N., 1985, Role of a microsomal carboxylesterase in reducing the action of malathion in eggs of Triatoma infestans, Pestic. Biochem. & Physiol. 23:24–32.

    CAS  Google Scholar 

  • Wu, C.-F., Ganetzky, B., Jan, L. Y., Jan, Y.-N., and Benzer, S., 1978, A Drosophila mutant with a temperature-sensitive block in nerve conduction, Proc. natn. Acad. Sci. USA 75:4047–4051.

    Article  CAS  Google Scholar 

  • Yamamoto, D., Quandt, F. N., and Narahashi, T., 1983, Modification of single sodium channels by the insecticide tetramethrin, Brain Res. 274:344–349.

    Article  PubMed  CAS  Google Scholar 

  • Ziegler, R., Whyard, S., Downe, A. E. R., Wyatt, G. R., and Walker, V. K., 1987, General esterase, malathion carboxylesterase, and malathion resistance in Culex tarsalis, Pestic. Biochem. & Physiol. 28:279–285.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Richmond, R.C., Nielsen, K.M., Brady, J.P., Snella, E.M. (1990). Physiology, Biochemistry and Molecular Biology of the Est-6 Locus in Drosophila melanogaster. In: Barker, J.S.F., Starmer, W.T., MacIntyre, R.J. (eds) Ecological and Evolutionary Genetics of Drosophila . Monographs in Evolutionary Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8768-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8768-8_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8770-1

  • Online ISBN: 978-1-4684-8768-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics