Cryogenic Instrumentation

  • Klaus D. Timmerhaus
  • Thomas M. Flynn
Part of the The International Cryogenics Monograph Series book series (ICMS)


Cryogenic engineering requires the measurement of both extensive and intensive properties of cryogenic liquids. Transducers are required for liquid level (quantity), both point and continuous systems, and mass rate systems. In addition, there must be transducers of pressure, temperature, density, and occasionally, quality. Cryogenic instrumentation may be considered as a unique field of measurement requiring the development of new techniques and should be regarded as a separate field of effort because of the increasingly higher accuracies required, the inherent remoteness of the measurements, and the peculiarities of the cryogenic fluids themselves. The latter consideration is among the strongest in setting cryogenic instrumentation apart. These fluid properties affecting cryogenic instrumentation need to be reviewed before considering the specific instrumentation techniques themselves.


Mass Flow Rate Liquid Level Liquid Hydrogen Gauge Factor Platinum Resistance Thermometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Arvidson and J. A. Brennan, ASRDI Oxygen Technology Survey, Volume VIII: Pressure Measurement, NASA SP-3092, 1975.Google Scholar
  2. 2.
    P. Smelser, Advances in Cryogenic Engineering, Vol. 8, Plenum Press, New York, 1963, p. 378.Google Scholar
  3. 3.
    J. W. Dean and T. M. Flynn, ISA Trans. 5, 223 (1966).Google Scholar
  4. 4.
    H. B. Jones, Transient Pressure Measuring Methods, Princeton University, Aero. Eng. Report No. 595a, 1963.Google Scholar
  5. 5.
    H. Vaugh, The Response Characteristics of Airplane and Missile Pressure Measuring Systems, Sandia Corporation, Report No. 174–54–51, 1954.Google Scholar
  6. 6.
    J. A. Brennan, J. W. Dean, D. B. Mann, and C. H. Kneebone, An Evaluation of Positive Displacement Cryogenic Volumetric Flowmeters, National Bureau of Standards, Technical Note 605, 1971.Google Scholar
  7. 7.
    ASME, Fluid Meters, Their Theory and Applications, 6th ed., ASME, New York, 1971.Google Scholar
  8. 8.
    ISA, Standard Practices for Instrumentation, Instrument Society of America, Pittsburgh, Pennsylvania, 1970.Google Scholar
  9. 9.
    ISO Recommendations R-541, Measurement of Fluid Flow by Means of Orifice Plates and Nozzles, January 1967.Google Scholar
  10. 10.
    R. J. Richards, R. B. Jacobs, and W. J. Pestalozzi, Advances in Cryogenic Engineering, Vol. 4, Plenum Press, New York, 1960, p. 272.Google Scholar
  11. 11.
    J. A. Brennan, R. W. Stokes, C. H. Kneebone, and D. B. Mann, An Evaluation of Selected Angular Momentum, Vortex Shedding and Orifice Cryogenic Flowmeters, NBS Technical Note. No. 650, 1974.Google Scholar
  12. 12.
    D. B. Mann, ASRDI Oxygen Technology Survey, Volume VI: Flow Measurement Instrumentation, NASA SP-3084, 1974.Google Scholar
  13. 13.
    H. M. Roder, ASRDI Oxygen Technology Survey, Volume V: Density and Liquid Level Measurement Instrumentation for the Cryogenic Fluids Oxygen, Hydrogen and Nitrogen, NASA SP-3083, 1974.Google Scholar
  14. 14.
    G. K. White, Experimental Techniques in Low Temperature Physics, Oxford University Press, Oxford, England, 1959, p. 93.Google Scholar
  15. 15.
    R. B. Scott, Proceedings of 6th ISA National Flight Test Instrumentation Symposium, San Diego, California, May 2–5, 1960.Google Scholar
  16. 16.
    H. L. Callendar, Phil. Trans. R. Soc. London 178, 160 (1887).Google Scholar
  17. 17.
    M. J. Van Dusen, J. Am. Chem. Soc. 47, 326 (1925).CrossRefGoogle Scholar
  18. 18.
    J. S. Blakemore, J. Winstel, and R. V. Edwards, Rev. Sci. Instrum. 41(6), 835 (1970).CrossRefGoogle Scholar
  19. 19.
    J. R. Clement and E. H. Quinnel, Rev. Sci. Instrum. 23, 213 (1952).CrossRefGoogle Scholar
  20. 20.
    R. S. Collier, L. L. Sparks, and T. R. Strobridge, Carbon Thin Film Thermometry, NBS Information Report 74–355, 1973.Google Scholar
  21. 21.
    B. W. Ricketson and R. Grinter, Temperature, American Institute of Physics, New York, 1982, p. 845.Google Scholar
  22. 22.
    J. M. Swartz, J. R. Gaines, and L. G. Rubin, Rev. Sci. Instrum. 46(9), 1177 (1975).CrossRefGoogle Scholar
  23. 23.
    M. Ganapati Rao, Temperature, American Institute of Physics, New York, 1982, p. 1205.Google Scholar
  24. 24.
    J. K. Krause and P. R. Swinehart, Advances in Cryogenic Engineering, Vol. 31, Plenum Press, New York, 1986, p. 1247.CrossRefGoogle Scholar
  25. 25.
    H. B. Sachse, TemperatureIts Measurement and Control in Science and Industry 3, Part 2, Reinhold Publishing Corporation, New York, 1962, p. 347.Google Scholar
  26. 26.
    R. L. Powell, M. D. Bunch, and L. P. Caywood, Advances in Cryogenic Engineering, Vol. 6, Plenum Press, New York, 1961, p. 537.Google Scholar
  27. 27.
    R. P. Reed and A. F. Clark, Materials at Low Temperatures, American Society of Metals, Metals Park, Ohio, 1983.Google Scholar
  28. 28.
    R. L. Powell, W. J. Hall, C. H. Hyink, L. L. Sparks, G. W. Burns, M. G. Scroger, and H. H. Plumb, Thermocouple Reference Tables Based on IPTS-68, NBS Monograph 125, 1974.Google Scholar
  29. 29.
    L. L. Sparks and R. L. Powell, J. Res. Nat. Bur. Stand. 76A, 263 (1973).Google Scholar
  30. 30.
    L. G. Rubin, B. L. Brandt, and H. H. Sample, Cryogenics 22, 491 (1982).CrossRefGoogle Scholar
  31. 31.
    L. G. Rubin, B. L. Brandt, and H. H. Sample, Temperature, American Institute of Physics, New York, 1982, p. 1333.Google Scholar
  32. 32.
    L. L. Sparks, Materials at Low Temperatures, American Society for Metals, Metals Park, Ohio, 1983.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Klaus D. Timmerhaus
    • 1
  • Thomas M. Flynn
    • 2
  1. 1.University of ColoradoBoulderUSA
  2. 2.Ball Aerospace Systems GroupBoulderUSA

Personalised recommendations