Skip to main content

Equipment Associated with Low-Temperature Systems

  • Chapter
Cryogenic Process Engineering

Part of the book series: The International Cryogenics Monograph Series ((ICMS))

  • 929 Accesses

Abstract

A critical component in any low-temperature liquefaction and refrigeration system is the heat exchanger. This point is readily demonstrated by considering the influence of heat exchanger effectiveness on the liquid yield for a simple Joule-Thomson liquefaction process. For example, if the working fluid is nitrogen and the lower and upper pressure limits are 0.101 and 20.2 MPa, respectively, the liquid yield under these conditions will be zero for an exchanger with an effectiveness less than 0.85. Heat exchanger effectiveness in this context is defined as the ratio of the actual heat transferred to the maximum heat that theoretically could have been transferred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. S. O’Neill, C. F. Gottzmann, and J. W. Terbot, Advances in Cryogenic Engineering, Vol. 17, Plenum Press, New York, 1972, p. 420.

    Google Scholar 

  2. E. D. Grimison, Trans. ASME 59, 583 (1937);

    CAS  Google Scholar 

  3. E. D. Grimison, Trans. ASME 60, 381 (1938).

    Google Scholar 

  4. E. J. Gregory, Cryogenic Engineering, B. A. Hands (Ed.), Academic Press, Orlando, FL, 1986, p. 193.

    Google Scholar 

  5. E. J. Davis and M. M. David, IEC Fund 3, 111 (1964).

    Article  CAS  Google Scholar 

  6. J. G. Collier, P. M. Lacey, and D. J. Pulling, Trans. IChE 42, T127 (1964).

    CAS  Google Scholar 

  7. J. M. Chenoweth and M. W. Martin, Pet. Refiner 34, 151 (1955).

    Google Scholar 

  8. J. E. Diehl, Pet. Refiner 36, 147 (1957).

    Google Scholar 

  9. R. F. Weimar and D. G. Hartzog, Advances in Cryogenic Engineering, Vol. 18, Plenum Press, New York, 1973, p. 52.

    Book  Google Scholar 

  10. S. G. Sydoriak, Advances in Cryogenic Engineering, Vol. 18, Plenum Press, New York, 1973, p. 73.

    Book  Google Scholar 

  11. R. J. Richards, R. F. Robbins, R. B. Jacobs, and D. C. Holten, Advances in Cryogenic Engineering, Vol. 3, Plenum Press, New York, 1960, p. 375.

    Book  Google Scholar 

  12. C. Johannes and J. Mollard, Advances in Cryogenic Engineering, Vol. 17, Plenum Press, New York, 1972, p. 332.

    Google Scholar 

  13. R. W. Lockhart and R. C. Martinelli, Chem. Eng. Progr. 45(1), 39 (1949).

    Google Scholar 

  14. K. D. Timmerhaus and R. J. Schoenhals, Advances in Cryogenic Engineering, Vol. 19, Plenum Press, New York, 1974, p. 445.

    Google Scholar 

  15. G. B. Wallis, One-Dimensional Two-Phase Flow, McGraw-Hill, New York, 1969.

    Google Scholar 

  16. W. M. Kays and A. L. London, Compact Heat Exchangers, 3rd ed., McGraw-Hill, New York, 1984.

    Google Scholar 

  17. A. G. Lenfestey, Advanced Cryogenics, C. A. Bailey (Ed.), Plenum Press, New York, 1971, p. 155.

    Google Scholar 

  18. M. Jakob, Heat Transfer, Vol. 1, J. Wiley and Sons, New York, 1949, p. 235.

    Google Scholar 

  19. S. Harada, T. Matsuda, S. Saito, and K. Ihara, Proc. Fourth Inter. Cryocooler Conf., David Taylor Naval Ship Research and Development Center Pub., 1986, p. 159.

    Google Scholar 

  20. H. Sixsmith, J. Valenzuela, and W. L. Swift, Advances in Cryogenic Engineering, Vol. 33, Plenum Press, New York, 1988, p. 827.

    Google Scholar 

  21. H. Bliss and B. F. Dodge, Chem. Eng. Progr. 45, 51 (1949).

    CAS  Google Scholar 

  22. R. Strobridge, The Thermodynamic Properties of Nitrogen from 63 to 300 K Between 1 and 200 Atmospheres (NBS Tech. Note 129), U.S. Government Printing Office, Washington, D.C., 1963.

    Google Scholar 

  23. H. Hausen, Wärmeübertragung in Gegenstrom, Gleichstrom und Kreuzstrom, Springer-Verlag, Berlin, 1976.

    Google Scholar 

  24. A. Bretherton, Ph.D. dissertation, Bradford University, Bradford, England, 1970.

    Google Scholar 

  25. G. Walker and W. K. Wan, Proc. Fourth International Cryogenic Engineering Conference, IPC Science and Technical Press, Guildford, England, 1972.

    Google Scholar 

  26. T. J. Peterson and J. D. Fuerst, Advances in Cryogenic Engineering, Vol. 33, Plenum Press, New York, 1988, p. 655.

    Google Scholar 

  27. H. Sixsmith and W. L. Swift, Cryogenic Engineering, B. A. Hands (Ed.), Academic Press, Orlando, FL, 1986, p. 341.

    Google Scholar 

  28. J. S. Swearingen, Chem. Eng. Progr. 68(7), 95 (1972).

    CAS  Google Scholar 

  29. J. A. Valenzuela, H. Sixsmith, and W. L. Swift, Proc. Fourth Inter. Cryocooler Conf., David Taylor Naval Ship Research and Development Center Pub., 1987, p. 135.

    Google Scholar 

  30. H. Izumi, S. Harada, K. Matsubara, and S. Saito, Advances in Cryogenic Engineering, Vol. 31, Plenum Press, New York, 1986, p. 811.

    Book  Google Scholar 

  31. W. E. Gifford, Advances in Cryogenic Engineering, Vol. 2, Plenum Press, New York, 1960, p. 276.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Timmerhaus, K.D., Flynn, T.M. (1989). Equipment Associated with Low-Temperature Systems. In: Cryogenic Process Engineering. The International Cryogenics Monograph Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8756-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8756-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8758-9

  • Online ISBN: 978-1-4684-8756-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics