Properties of Cryogenic Fluids

  • Klaus D. Timmerhaus
  • Thomas M. Flynn
Part of the The International Cryogenics Monograph Series book series (ICMS)


The cryogenic region of most interest is characterized principally by five fluids: oxygen, nitrogen, neon, hydrogen, and helium. We do in fact speak of the “oxygen range” or the “hydrogen range.” Table 2.1 gives the normal (0.101 MPa or 1 atm) boiling temperature, the normal melting temperature, the critical temperature and pressure, and the normal latent heat of vaporization for these five cryogenic fluids and several other common cyrogens. Some of the important characteristics of the most widely used cryogenic liquids are discussed more specifically in the following paragraphs.


Liquid Helium Liquid Hydrogen Liquid Oxygen Normal Boiling Point Uranium Hexafluoride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. M. Roder and L. A. Weber, ASRDI Oxygen Technology Survey. Vol. I: Thermophysical Properties, NASA SP-3071, 1972.Google Scholar
  2. 2.
    H. W. Schmidt and D. E. Forney, ASRDI Oxygen Technology Survey. Vol. IX: Oxygen Systems Engineering Review, NASA SP-3090, 1975.Google Scholar
  3. 3.
    R. T. Jacobsen, R. B. Stewart, R. D. McCarty, and H. J. M. Hanley, Thermophysical Properties of Nitrogen from the Fusion Line to 3500 R (1944 K) for Pressures to 150,000 psia (1.0342 × 10 MPa), Natl. Bur. Stand. Tech. Note 648 (1973).Google Scholar
  4. 4.
    H. W. Wooley, R. B. Scott, and F. G. Brickwedde, J. Res. Natl. Bur. Stand. 41, 379 (1948).CrossRefGoogle Scholar
  5. 5.
    H. G. Hoge and J. W. Lassiter, J. Res. Natl. Bur. Stand. 47, 75 (1951).CrossRefGoogle Scholar
  6. 6.
    R. B. Scott, F. G. Brickwedde, H. C. Urey, and M. H. Wahl, J. Chem. Phys. 2, 454 (1934).CrossRefGoogle Scholar
  7. 7.
    R. D. McCarty and H. M. Roder, Selected Properties of Hydrogen, NBS Monograph No. 168, 1981.Google Scholar
  8. 8.
    R. D. McCarty, Thermophysical Properties of Helium-4 from 2 to 1500 K with Pressures to 1000 Atmospheres, Natl. Bur. Stand. Tech. Note 631 (1972).Google Scholar
  9. 9.
    E. L. Andronikashvili, Superfluidity, A Supplement to Helium, Consultants Bureau, New York, 1959, Chap. II.Google Scholar
  10. 10.
    P. L. Kapitza, Nature 141, 74 (1938).CrossRefGoogle Scholar
  11. 11.
    J. F. Allen and A. D. Misener, Nature 141, 75 (1938).CrossRefGoogle Scholar
  12. 12.
    V. Arp and R. H. Kropschot, A Helium, in Applied Cryogenic Engineering, R. W. Vance (Ed.), John Wiley and Sons, 1962.Google Scholar
  13. 13.
    K. R. Atkins, Liquid Helium, Cambridge University Press, London, 1959.Google Scholar
  14. 14.
    A. Van Itterbeek and O. Verbeke, Cryogenics 1(2), 77 (1960).CrossRefGoogle Scholar
  15. 15.
    W. F. Giauque, J. Am. Chem. Soc. 51, 2308 (1929).Google Scholar
  16. 16.
    H. G. Hoge, J. Res. Natl. Bur. Stand. 332 (1950).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Klaus D. Timmerhaus
    • 1
  • Thomas M. Flynn
    • 2
  1. 1.University of ColoradoBoulderUSA
  2. 2.Ball Aerospace Systems GroupBoulderUSA

Personalised recommendations