Skip to main content

Function and Properties of RP4 DNA Primase

  • Chapter
Proteins Involved in DNA Replication

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 179))

Abstract

Plasmid-specific DNA primase activity was detected by an in vitro assay for the conversion of single-stranded circular DNA of small phages to its duplex form (1). A survey of plasmids representative of most of the known incompatibility groups (2) revealed that several of these plasmids specify this activity (Table 1). Existence of a plasmid-encoded DNA primase explains the discovery that IncI plasmids can partially suppress the effect of temperature-sensitive dnaG mutations in Escherichia coli (3). All the plasmids listed in Table 1 specifying primase activity suppress the dnaG3 mutation as measured by colony-forming ability at the nonpermissive temperature, thus providing a potent in vivo assay for this class of enzymes. It is also known that expression with plasmids derepressed for functions of conjugal DNA transfer and for pilus synthesis leads to higher levels of primase than with the corresponding wild-type plasmids (1, 2, 5, 7). This correlation suggests that the enzyme may play a role in conjugal DNA synthesis. Studies with the IncIα plasmid ColIb have indicated that plasmid primase is required to initiate efficient synthesis of DNA complementary to the transferred strand in the recipient cell, with the protein being supplied by the donor parent and probably transmitted between the mating cells (11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lanka, E., Scherzinger, E., Günther, E. and Schuster, H. (1979) Proc. Natl. Acad. Sci. USA 76, 3632.

    Article  PubMed  CAS  Google Scholar 

  2. Lanka, E. and Barth, P. T. (1981) J. Bacteriol 148, 769.

    PubMed  CAS  Google Scholar 

  3. Wilkins, B. M. (1975) J. Bacteriol. 122, 899.

    PubMed  CAS  Google Scholar 

  4. Dalrymple, B. P., Boulnois, G. J., Wilkins, B. M., Orr, E. and Williams, P. H. (1982) J. Bacteriol. 151, 1.

    PubMed  CAS  Google Scholar 

  5. Dalrymple, B. P. and Williams, P. H. (1982) J. Bacteriol. 152, 901.

    PubMed  CAS  Google Scholar 

  6. Dalrymple, B. P. (1982) Ph. D. thesis: University of Leicester, England.

    Google Scholar 

  7. Wilkins, B. M., Boulnois, G. J. and Lanka, E. (1980) Nature 290, 217.

    Article  Google Scholar 

  8. Sasakawa, C. and Yoshikawa, M. (1978) J. Bacteriol. 133, 485.

    PubMed  CAS  Google Scholar 

  9. Ludwig, R. A. and Johansen, E. (1980) Plasmid 3, 359.

    Article  PubMed  CAS  Google Scholar 

  10. Lanka, E., Lurz, R., Kröger, M. and Fürste, J. P. Mol. Gen. Genet, in press.

    Google Scholar 

  11. Chatfield, L. K., Orr, E., Boulnois, G. J. and Wilkins, B. M. (1982) J. Bacteriol. 152, 1188.

    PubMed  CAS  Google Scholar 

  12. Thomas, C. M. (1981) Plasmid 5, 10.

    Article  PubMed  CAS  Google Scholar 

  13. Lanka, E., Lurz, R. and Fürste, J. P. Plasmid, in press.

    Google Scholar 

  14. Towbin, H., Staehelin, T. and Gordon, J. (1979) Proc. Natl. Acad. Sci. USA 76, 4350.

    Article  PubMed  CAS  Google Scholar 

  15. Godson, G. N. and Sinsheimer, R. L. (1967) Biochim. Biophys. Acta 149, 476.

    Article  PubMed  CAS  Google Scholar 

  16. Boulnois, G. J. and Wilkins, B. M. (1979) Mol. Gen. Genet. 175, 275.

    Article  PubMed  CAS  Google Scholar 

  17. de Boer, H. A., Comstock, L. J. and Vasser, M. (1983) Proc. Natl. Acad. Sci. USA 80, 21.

    Article  PubMed  Google Scholar 

  18. Laemmli, U. K. (1970) Nature 227, 680.

    Article  PubMed  CAS  Google Scholar 

  19. Wechsler, J. A. and Gross, J. D. (1971) Mol. Gen. Genet. 113, 273.

    Article  PubMed  CAS  Google Scholar 

  20. Meynell, G. G. and Lawn, A. M. (1968) Nature 217, 1186.

    Article  Google Scholar 

  21. Coetzee, J. N., Sirgel, F. A. and Lecatsas, G. (1980) J. Gen. Microbiol. 117, 547.

    PubMed  CAS  Google Scholar 

  22. Maxam, A. M. and Gilbert, W. (1977) Proc. Natl. Acad. Sci. USA 74, 560.

    Article  PubMed  CAS  Google Scholar 

  23. Nossal, N. G. (1983) Ann. Rev. Biochem. 53, 581.

    Article  Google Scholar 

  24. Oertel, W. and Schaller, H. (1973) Eur. J. Biochem. 35, 106.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lanka, E., Fürste, J.P. (1984). Function and Properties of RP4 DNA Primase. In: Proteins Involved in DNA Replication. Advances in Experimental Medicine and Biology, vol 179. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8730-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8730-5_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8732-9

  • Online ISBN: 978-1-4684-8730-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics