Sympathetic Neural Control of Indoleamine Metabolism in the Rat Pineal Gland

  • Harry J. Lynch
  • Maria Hsuan
  • Richard J. Wurtman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 54)


The rate of melatonin biosynthesis in the mammalian pineal gland varies rhythmically. Melatonin secreted from the pineal acts on the brain to modify its biochemical composition (Anton-Tay, 1971) and influence such diverse behavioral and physiological functions as rhythmic locomotor activity patterns (Quay, 1970), the electroencephalogram (Roldan and Anton-Tay, 1968), sleep (Marczynski, Yamaguchi, Ling, and Grodzinska, 1964), and, through its apparent effects on the anterior pituitary, gonadal function and other peripheral endocrine effects (Reiter and Fraschini, 1969). The endocrine rhythms associated with pineal gland function are described by Russel Reiter elsewhere in this volume.


Pineal Gland Melatonin Secretion Constant Darkness Melatonin Synthesis Pineal Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anton-Tay, F. (1971). Pineal brain relationships. In: The Pineal Gland (Wolstenholm, G. E. VI. and Knight, J., eds.), pp. 213–227, Churchill Livingston, London.Google Scholar
  2. Ariens-Kappers, J. (1960). Innervation of the epiphysis cerebri in the albino rat. Anat. Rec. 136, 220–227.Google Scholar
  3. Axelrod, J., Shein, H., and Wurtman, R. J. (1969). Stimulation of 14C- melatonin synthesis from 14C-tryptophan by noradrenalin in rat pineal organ culture. Proc. Natl. Acad. Sci., U.S.A. 62, 544–549.PubMedCrossRefGoogle Scholar
  4. Brownstein, M., Saavedra, J. M., and Axelrod, J. (1973). Control of pineal N-acetylserotonin by a beta-adrenergic receptor. Mol. Pharmacol. 9, 605–611.PubMedGoogle Scholar
  5. Deguchi, T. and Axelrod, J. (1972a). Induction and superinduction of serotonin N-acetyltransferase by adrenergic drugs and denervation in rat pineal organ. Proc. Nat. Acad. Sci., U.S.A. 69, 2208–2211.CrossRefGoogle Scholar
  6. Deguchi, T. and Axelrod, J. (1972b). Sensitive assay for serotonin-N-acetyltransferase activity in rat pineal. Anal. Biochem. 50, 174–179.PubMedCrossRefGoogle Scholar
  7. Eränkö, O. and Eränkö, L. (1971). Loss of histochemically demonstrable catecholamines and acetylcholinesterase from sympathetic nerve fibers of the pineal body of the rat after chemical sympathectomy with 6-hydroxydopamine. Hi stochern. J. 3, 357–363.Google Scholar
  8. Fiske, V. M., Bryant, K., and Putnam, J. (1960). Effect of light on weight of the pineal in the rat. Endocrinology 66, 489–491.CrossRefGoogle Scholar
  9. Klein, D. C. and Weiler, J. L. (1970). Indole metabolism in the pineal gland: a circadian rhythm in N-acetyltransferase. Science 169, 1093–1095.PubMedCrossRefGoogle Scholar
  10. Klein, D. C. and Weiler, J. L. (1973). Adrenergic-adenosine 3′5′-monophosphate regulation of serotonin N-acetyltransferase activity and the temporal relationship of serotonin N-acetyl transferase activity to the synthesis of 3H-N-acetylserotonin and 3H-melatonin in the cultured rat pineal gland. J. Pharmacol. Exp. Therap. 186, 516–527.Google Scholar
  11. Lynch, H. J. (1971). Diurnal oscillations in pineal melatonin content. Life Sci. 10, 791–795.CrossRefGoogle Scholar
  12. Lynch, H. J., Eng, J. P., and Wurtman, R. J. (1973). Control of pineal indole biosynthesis by changes in sympathetic tone caused by factors other than environmental lighting. Proc. Natl. Acad. Sci., U.S.A. 70, 1704–1707.PubMedCrossRefGoogle Scholar
  13. Lynch, H. J., Wang, P., and Wurtman, R. J. (1973). Increase in rat pineal melatonin content followina L-dopa administration. Life Sci. 12, 145–151.CrossRefGoogle Scholar
  14. Marczynski, T. J., Yamaguchi, N., Ling, G. M., and Grodzinska, L. (1964). Sleep induced by the administration of melatonin (5-methoxy-N-acetyl-tryptamine) to the hypothalamus of unrestrained cats. Experientia 20, 435–437.PubMedCrossRefGoogle Scholar
  15. Moore, R. Y., Heller, A., Wurtman, R. J., and Axelrod, J. (1967). Visual pathways mediating pineal response to environmental lighting. Science 155, 220–223.PubMedCrossRefGoogle Scholar
  16. Nagle, C. A., Cardinali, D. P., and Rosner, J. M. (1972). Light regulation of rat retinal hydroxyindole-O-methyltransferase (HIOMT) activity. Endocrinology 91, 423–426.PubMedCrossRefGoogle Scholar
  17. Owman, C. (1965). Localization of neural and parenchymal monamines under normal and experimental conditions in the mammalian pineal gland. Prog. Brain Res. 10, 423–453.PubMedCrossRefGoogle Scholar
  18. Quay, W. B. (1970). Precocious entrainment and associated characteristics of activity patterns following pinealectomy and reversal of photoperiod. Physiol. Behav. 5, 1281–1290.PubMedCrossRefGoogle Scholar
  19. Quay, W. B. (1963). Circadian rhythm in rat pineal serotonin and its modifications by estrous cycle and photoperiod. Gen. Comp. Endocrinol. 3, 473–479.CrossRefGoogle Scholar
  20. Ralph, C. L. and Lynch, H. J. (1970). A quantitative melatonin bioassay. Gen. Comp. Endocrinol. 15, 334–338.PubMedCrossRefGoogle Scholar
  21. Ralph, C. L., Mull, D., Lynch, H. J., and Hedlund, L. (1971). A melatonin rhythm persists in rat pineals in darkness. Endocrinology 89, 1361–1366.PubMedCrossRefGoogle Scholar
  22. Reiter, R. J. and Fraschini, F. (1969). Endocrine aspects of the mammalian pineal gland: a review. Meuroendocrinology 5, 219–255.CrossRefGoogle Scholar
  23. Roldan, E. and Anton-Tay, F. (1968). EEG and convulsive threshold changes produced by pineal extract administration. Brain Res. 11, 238–245.PubMedCrossRefGoogle Scholar
  24. Snyder, S. H., Axelrod, J., Wurtman, R. J. and Fischer, J. E. (1965). Control of 5-hydroxytryptophan decarboxylase activity in the rat pineal gland by sympathetic nerves. J. Pharmacol. Exp. Therap. 147, 371–375.Google Scholar
  25. Shein, H., Wurtman, R. J., and Axelrod, J. (1967). Serotonin synthesis in pineal gland in organ culture. Nature 213, 730–731.PubMedCrossRefGoogle Scholar
  26. Shein, H. M. and Wurtman, R. J. (1969). Cyclic adenosine monophosphate: stimulation of melatonin and serotonin synthesis in cultured rat pineals. Science 166, 519–520.PubMedCrossRefGoogle Scholar
  27. Taylor, A. N. and Wilson, R. W. (1970). Electrophysiological evidence for the action of light on the pineal gland in the rat. Experientia 26, 267–269.PubMedCrossRefGoogle Scholar
  28. Thoenen, H. and Tranzer, J. P. (1968). Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine. Arch. Exp. Pathol. Pharmacol. 261, 271–288.Google Scholar
  29. Wurtman, R. J., Altschule, M. D., and Holmgren, U. (1959). Effects of pinealectomy and of a bovine pineal extract on rats. Am. J. Physiol. 197, 108–110.PubMedGoogle Scholar
  30. Wurtman, R. J., Axelrod, J., and Chu, E. W. (1963). Melatonin, a pineal substance: its effect on the rat ovary. Science 141, 277–278.PubMedCrossRefGoogle Scholar
  31. Wurtman, R. J., Axelrod, J., and Fischer, J. E. (1964). Melatonin synthesis in the pineal gland: effect of light mediated by the sympathetic nervous system. Science 143, 1328–1330.CrossRefGoogle Scholar
  32. Wurtman, R. J., Axelrod, J. and Kelly, D. E. (1968). The Pineal. Academic Press, New York.Google Scholar
  33. Wurtman, R. J., Axelrod, J. and Phillips, L. (1963). Melatonin synthesis in the pineal gland: control by light. Science 142, 1071–1073.PubMedCrossRefGoogle Scholar
  34. Wurtman, R. J., Axelrod, J., Sedvall, G. and Moore, R. Y. (1967). Photic and neural control of the 24-hour norepinephrine rhythm in the rat pineal gland. J. Pharmacol. Exptl. Therap. 157, 487–492.Google Scholar
  35. Wurtman, R. J., Roth, W., Altschule, M. D., and Wurtman, J. J. (1961). Interactions of the pineal and exposure to continuous light on organ weights of female rats. Acta. Endocrinol. 36, 617–624.PubMedGoogle Scholar
  36. Wurtman, R. J., Shein, H. M. and Larin, F. (1971). Mediation by 3-adrenergic receptors of effect of norepinephrine on pineal synthesis of 14C-serotonin and 14C-melatonin. J. Neurochem. 18, 1683–1687.PubMedCrossRefGoogle Scholar

Discussion References

  1. Deguchi, T. and Axelrod, J. (1972). Proc. Natl. Acad. Sci. USA 69, 2208–2211.PubMedCrossRefGoogle Scholar
  2. Halberg, F., Haus, E., Cardoso, S., Scheving, L., Kühl, J., Shiotsuka, R., Rosene, G., Pauly, J., Runge, W., Spalding, J., Lee, J., and Good, R. (1973). Experientia 29, 909–934.PubMedCrossRefGoogle Scholar
  3. Lynch, H., Eng, J., and Wurtman, R. J. (1973). Proc. Natl. Acad. Sci. USA 70, 1704–1707.PubMedCrossRefGoogle Scholar
  4. Pelham, R. W., Vaughan, G. M., Sandock, K. L., and Vaughan, M. K. (1973). J. Clin. Endocrinol. Metab. 37, 341–344.CrossRefGoogle Scholar
  5. Weiss, B. (1968). Adv. Pharmacol. 6A, 152–155.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Harry J. Lynch
    • 1
  • Maria Hsuan
    • 1
  • Richard J. Wurtman
    • 1
  1. 1.Laboratory of Neuroendocrine Regulation, Department of Nutrition and Food ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations