Skip to main content

Multiple Mechanisms in Ganglionic Transmission

  • Chapter

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 25))

Abstract

Transmission in sympathetic ganglia is complex; in addition to the fast excitatory postsynaptic potential (f-epsp) which represents a primary synaptic pathway of the ganglia, there are several slow synaptic potentials, both excitatory and inhibitory that may serve to modulate the primary transmission; these include slow excitatory and late slow excitatory postsynaptic potentials (s-epsp and ls-epsp respectively) and slow inhibitory postsynaptic potential (s-ipsp) (3,14,18,19,23). Ganglionic transmission is also a multitransmitter phenomenon. There is now evidence that in addition to the classical transmitter, acetylcholine (ACh), a number of other substances may serve as transmitters or modulators in the ganglia. In recent years, immunohistofluorescent techniques have demonstrated the presence of various peptides, such as substance P or a related peptide, and enkephalins or enkephalin-like substances, in peripheral media (cf. 28). We present here some of our findings indicating that substance P and enkephalins may indeed participate in ganglionic transmission.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, P.R. and Brown, D.A. (1975): J. Physiol. (Lond) 250: 85–120.

    Google Scholar 

  2. Chan-Palay, V., Jonsson, G. and Palay, S.L. (1978): Proc. Nat. Acad. Sci. 75:1582–1586.

    Article  Google Scholar 

  3. Dun, N.J. (1980): Fed. Proc. (in press).

    Google Scholar 

  4. Dun, N. and Karczmar, A.G. (1977): J. Pharmacol, Exp, Ther. 200:328–335.

    Google Scholar 

  5. Dun, N.J. and Karczmar, A.G. (1977): J. Pharmacol. Exp. Ther. 202:89–96.

    Google Scholar 

  6. Dun, N.J. and Karczmar, A.G. (1979): Neuropharmacology 18: 215–218.

    Article  Google Scholar 

  7. Dun, N. and Nishi, S. (1974): J. Physiol. (Lond) 239:155–164.

    Google Scholar 

  8. Dun, N.J., Kaibara, K. and Karczmar, A.G. (1977): Science 197:778–780.

    Article  Google Scholar 

  9. Dun, N.J., Kaibara, K. and Karczmar, A.G. (1978): Brain Res.150:658–674.

    Article  Google Scholar 

  10. Greengard, P. (1976): Nature 260:101–102.

    Article  Google Scholar 

  11. Hokfelt, T., Elfvin, L.G., Schultzberg, M., Goldstein, M. and Nilsson, G. (1977): Brain Res. 132:29–41.

    Article  Google Scholar 

  12. Hokfelt, T., Kellerth, J.O., Nilsson, G. and Pernow, B. (1975): Science 190:889.

    Article  Google Scholar 

  13. Jan, Y.N., Jan, L.Y. and Kuffler, S.W. (1979): Proc. Nat. Acad. Sci. 76:1501–1504.

    Article  Google Scholar 

  14. Karczmar, A.G. and Dun, N.J. (1978): In Psychopharmaco1ogy: A Generation of Progress (eds) M.A. Lipton, A. DiMascio and K.F. Killam, Raven Press, New York, pp. 293–305.

    Google Scholar 

  15. Kato, E., Kuba, Y. and Keketsu, K. (1978): Brain Res. 153: 398–402.

    Article  Google Scholar 

  16. Kobayashi, H., Hashiguchi, T. and Ushiyamas N.S. (1978): Nature 271:268–269.

    Article  Google Scholar 

  17. Krnjevic, K. (1974): Physiol. Rev. 54:418–540.

    Google Scholar 

  18. Kuba, K. and Koketsu, K. (1978): In Progress in Neurobiology 11, Pergamon Press, Oxford.

    Google Scholar 

  19. Libet, B. (1970): Fed. Proc. 29:1945.

    Google Scholar 

  20. Libet, B. (1979): In Integrative Functions of the Autonomic Nervous System (eds) C. McC. Brooks, K. Koizumi and A. Sato, University of Tokyo Press, Tokyo.

    Google Scholar 

  21. Libet, B. and Owman, C. (1974): J. Physiol. (Lond) 237:635–646.

    Google Scholar 

  22. Heild, T.O. (1978): Brain Res. 140:231–239.

    Article  Google Scholar 

  23. Nishi, S. (1974): In The Peripheral Nervous System (ed) J.I. Hubbard, Plenum Press, New York, pp. 225–255.

    Chapter  Google Scholar 

  24. Nishi, S. and Koketsu, K. (1968): J. Neuro Physiol. 31:109–121

    Google Scholar 

  25. Nishi, S., Karczmar, A.G. and Dun, N.J. (1978): In Advances. in Pharmacology and Therapeutics, Vol. 2 (ed) F. Simon, Pergamon Press, New York.

    Google Scholar 

  26. North, R.A. and Karras, P.J. (1978): Nature 272:73–74.

    Article  Google Scholar 

  27. North, R.A., Katayama, Y. and Williams, J.T. (1979); Brain Res. 165:67–77.

    Article  Google Scholar 

  28. Schultzberg, M., Hokfelt, T., Lundberg, J.M., Terenius, L., Brandt, J., Elde, R.P. and Goldstein, M. (1979); Neuroscience 4:249–256.

    Article  Google Scholar 

  29. Weight, F.F. and Padjen, A. (1973); Brain Res. 55:225–234

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Dun, N.J., Karczmar, A.G. (1981). Multiple Mechanisms in Ganglionic Transmission. In: Pepeu, G., Ladinsky, H. (eds) Cholinergic Mechanisms. Advances in Behavioral Biology, vol 25. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8643-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8643-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8645-2

  • Online ISBN: 978-1-4684-8643-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics