Skip to main content

Influx and Efflux of N,N,N-Trimethyl-N-Prop-2-Ynylammonium by a Rat Brain Synaptosome Preparation

  • Chapter
Cholinergic Mechanisms

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 25))

  • 68 Accesses

Abstract

Several analogs of choline (Ch) have been studied as substrates for the Ch uptake systems present in synaptosomes or brain slices (4–7,9,12,13,15). These analogs are monoethylcholine, diethylcholine, triethylcholine, pyrrolidinecholine, homocholine, sulfocholine, l,l-dimethyl-3-hydroxypiperidine, N-(4-hydroxylbutyl)-N,N, N-trimethylammonium (TMHBA) and N,N-dimethylaminoethanol (DJIAE), and all have a free hydroxyl group. With the exceptions of TMHBA (16) and DMAE (15) they are alternative substrates for the high affinity Ch uptake system as well as precursors to false cholinergic transmitters. These findings and the results of studies on Ch analogs as inhibitors of the high affinity uptake of Ch (22) define some, of the structural requirements for alternative substrates. To be recognized as a substrate, it appears that the Ch analog must be a simple alkyl ammonium or sulfonium that has no more than three methylene groups between the quaternary head and terminal hydroxyl group. The observation that acetylcholine (ACh) is not transported by the high affinity Ch uptake system suggests that a free hydroxyl group also is required for a Ch analog to be a substrate for this transport (17,18). To test this notion, a Ch analog devoid of a hydroxyl group, N,N,N-trimethyl-N-prop-2-ynylammonium (TMPYA), was evaluated as a substrate for the Ch high affinity uptake system. TMPYA was chosen on the basis that the electrostatic potential it generates is quite similar to that of Ch (25). On that basis, TMPYA should be recognized by and interact with binding sites for Ch (see 24 for review). Further, the high affinity transport of Ch, monoethylcholine, pyrrolidinecholine, and homocholine by rat brain synaptosomes is so closely linked to acetylation (3,7,28), it is difficult to study this uptake system separately from the associated metabolism of the substrates. Thus it is desireable to have a non- metabolizable analog of the natural substrate for transport studies. The preliminary results of studies on one such analog, TMPYA, are reported here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barker, L.A. (1976): Life Sci. 18:725–732.

    Article  Google Scholar 

  2. Barker, L.A., Dowdall, M.J. and Whittaker, V.P. (1972): Biochem. J. 130:1063–1080.

    Google Scholar 

  3. Barker, L.A. and Mittag, T.W. (1973): FEBS Lett. 35:141–144.

    Article  Google Scholar 

  4. Barker, L.A. and Mittag, T.W. (1975): J. Pharmacol. Exp. Ther. 192:86–94.

    Google Scholar 

  5. Chiou, C.Y. (1974): 14:1721–1733.

    Google Scholar 

  6. Collier, B., Boksa, P. and Lovat, S. (1979): Prog. Brain Res. 451:107–121.

    Article  Google Scholar 

  7. Collier, B., Lovat, S., Ilson, D., Barker, L.A. and Mittag, T. W. (1977): J. Neurochem. 28:331–340.

    Article  Google Scholar 

  8. Diamond, I. and Kennedy, E.T. (1969): J. Biol. Chem. 244:3258–3263.

    Google Scholar 

  9. Frankenberg, L., Heimburger, G., Nilson, G. and Sorbo, B. (1973): Eur. J. Pharmacol. 23:37.

    Article  Google Scholar 

  10. Gibson, G.E., Jope, R. and Blass, J.P. (1975): Biochem. J. 148:17–23.

    Google Scholar 

  11. Haga, T. and Nöda, H. (1973): Biochem. Biophys. Acta 291:564–575.

    Article  Google Scholar 

  12. Hemsworth, B.A., Shreeve, S.M. and Veitch, G.B.A. (1979): Brit.J. Pharmacol. 66:.465P.

    Google Scholar 

  13. Howard-Butcher, S., Cho, A.K. and Schaeffer, J.C. (1974): Fed. Proc. 13:1660.

    Google Scholar 

  14. Jope, R.S. and Jenden, D.J. (1977): Life Sci. 20:1389–1393.

    Article  Google Scholar 

  15. Jope, R.S. and Jenden, D.J. (1979): J. Pharmacol. Exp. Ther. 211:472–479.

    Google Scholar 

  16. Jope, R.S., Weiler, M.H. and Jenden, D.J. (1978): Neurochemistry 30:949–954.

    Article  Google Scholar 

  17. Kuhar, M.J. (1978): IN Cholinergic Mechanisms and Psychopharma-cology (ed) D.J. Jenden, Plenum Press, New York, pp. 447–456.

    Chapter  Google Scholar 

  18. Kuhar, M.J. and Simon, J.R. (1974): J. Neurochem. 22:1135–1137.

    Article  Google Scholar 

  19. Maldonado, M.E., Oh, K.-J. and Frey, P.A. (1972): J. Biol. Chem. 247:2711–2716.

    Google Scholar 

  20. Murrin, L.C. and Kuhar, M.J. (1976): Molec. Pharmacol. 12:1082–1090.

    Google Scholar 

  21. Roskoski, R. (1978): J. Neurochem. 30:1357–1361.

    Article  Google Scholar 

  22. Simon, J.R., Mittag, T.W. and Kuhar, M.J. (1975): Biochem. Pharmacol. 24:1139–1142.

    Article  Google Scholar 

  23. Weiler, M., Jope, R.S. and Jenden, D.J. (1978): J. Neurochem. 31: 789–796.

    Article  Google Scholar 

  24. Weinstein, H. (1975): Int. J. Quant. Chem. QBS 2:59–69.

    Google Scholar 

  25. Weinstein, H., Maayani, S., Srebrenik, S., Cohen, S. And Sokolovsky, M. (1973): Molec. Pharmacol. 9:820–834.

    Google Scholar 

  26. Wheeler, D.D. (1978): J. Neurochem. 31:109–120.

    Article  Google Scholar 

  27. Wheeler, D.D. (1979): J. Neurochem. 32:1197–1213.

    Article  Google Scholar 

  28. Yamamura, H.I. and Snyder, S.H. (1973): J. Neurochem. 21: 1255–1374.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Barker, L.A. (1981). Influx and Efflux of N,N,N-Trimethyl-N-Prop-2-Ynylammonium by a Rat Brain Synaptosome Preparation. In: Pepeu, G., Ladinsky, H. (eds) Cholinergic Mechanisms. Advances in Behavioral Biology, vol 25. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8643-8_48

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8643-8_48

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8645-2

  • Online ISBN: 978-1-4684-8643-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics