Zonal Scanning of Thin-Layer Chromatograms

  • Fred Snyder

Abstract

Thin-layer chromatography (TLC) plates have been assayed for radioactivity by autoradiography [1–3], continuous scanning [4–9], area scraping [10–13], and zonal scanning [14]. Direct counting of the thin-layer adsorbent [10,11] in a liquid scintillation system provides the simplest, most quantitative and most efficient means of counting weak-energy beta emitters of low-activity samples, since elution steps are not required and the maximal counting efficiency is possible. The scintillation solution of choice for counting carbon-14 and tritium under these conditions is shown in Table I. The water in this solution serves to deactivate the silica, since adsorption of radioactivity in less polar solvent systems can result in self-absorption losses (10% for C14 and 25% for H3) on 10- to 25-μ silica particles. If radioactivity persists in partitioning between particles and solvent, Cab-O-Sil must be used to suspend the particles, and correction factors must be used [14]. Silica, iodine, dichlorofluoroscein and rhodamine-6G have no quenching properties in this system, whereas elemental carbon and high levels of AgNO3-treated silica can cause severe quenching [14]. Neatan, a polyvinyl propionate used for preserving thin-layer chromatograms, causes no color quenching effect, but it can cause a significant decrease in counting efficiency (because of self-absorption) when it coats partidies containing adsorbed radioactivity. This report elaborates on the zonal scanning technique and demonstrates some typical data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mangold, H., “Isotopentechnik,” in: Dunnschicht-chromatographie (by E. Stahl), Springer-Verlag, Berlin (1962), pp. 62–79.Google Scholar
  2. 2.
    Mangold, H. K., Kammereck, R., and Malins, D. C., “Thin-layer chromatography as an analytical and preparative tool in lipid radiochemistry,” in: International Symposium on Microchemical Technique. Proc. 1961, Interscience, NewYork (1962), pp. 697–714.Google Scholar
  3. 3.
    Sheppard, H., and Tsien, W. H., Anal. Chem. 35: 1992 (1963).CrossRefGoogle Scholar
  4. 4.
    Csallany, A.S., and Draper, H. H., Anal. Biochem. 4: 418 (1962).CrossRefGoogle Scholar
  5. 5.
    Schulze, P. E., and Wenzel, M., Angew. Chem. Intern. Ed. Engl. 1:580 (1962).CrossRefGoogle Scholar
  6. 6.
    Squibb, R. L., Nature 198: 317 (1963).CrossRefGoogle Scholar
  7. 7.
    Roucayrol, J. C., and Taillandier, P., Compt. Rend. 256: 4653 (1962).Google Scholar
  8. 8.
    Rosenberg, J., and Bolgar, M., Anal. Chem. 35: 1559 (1963).CrossRefGoogle Scholar
  9. 9.
    Breccia, A., and Spalletti, F., Nature 198: 756 (1963).CrossRefGoogle Scholar
  10. 10.
    Snyder, F., and Stephens, N., Anal. Biochem. 4: 128 (1962).CrossRefGoogle Scholar
  11. 11.
    Brown, J. L., and Johnston, J.M., J. Lipid Res. 3: 480 (1962).Google Scholar
  12. 12.
    Drawert, F., Bachmann, O., and Reuther, K.H., J. Chromatog. 9: 376 (1962).CrossRefGoogle Scholar
  13. 13.
    Goldrick, B., and Hirsch, J., J. Lipid Res. 4: 482 (1963).PubMedGoogle Scholar
  14. 14.
    Snyder, F., Anal. Biochem. in press (1964).Google Scholar

Copyright information

© New England Nuclear Corporation 1965

Authors and Affiliations

  • Fred Snyder
    • 1
  1. 1.Medical DivisionOak Ridge Institute of Nuclear StudiesOak RidgeUSA

Personalised recommendations