Skip to main content
  • 294 Accesses

Abstract

In Milan, I collaborated with the biochemist Luigi Gorini, with whom I subsequently shared my life. We were studying the resistance of E. coli to a new antibiotic “penicillin”1 and its effect on the metabolism of acidoproteolytic bacteria.2 In 1948 we went to Paris. I joined Jacques Monod at the Institut Pasteur on studies of regulation of carbon metabolism. Thus began my studies in the field of cellular regulatory processes, whose rules were being explored and characterized by André Lwoff, Max Delbrück, Herman Kalckar, Jacques Monod, Mike Doudoroff, Luigi Gorini, and Sol Spiegelman.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gorini L, Torriani A. Biochemistry of Escherichia coli and the production of penicillinase. Nature 1947; 16:332–333.

    Article  Google Scholar 

  2. Gorini L, Torriani A. Action de la penicillinase sur l’activité proteolytique des bacteries acido-proteolytiques. Biochim Biophys Acta 1948; 2:226–238.

    Article  Google Scholar 

  3. Monod J, Torriani A. De l’amylomaltase d’Escherichia coli. Ann Inst Pasteur (Paris) 1950; 78:65–78.

    Google Scholar 

  4. Schwartz M. Expression phénotypique et génétique de mutations affectant le metabolisme du maltose chez Escherichia coli K12. Ann Inst Pasteur (Paris) 1967; 112:673–702.

    Google Scholar 

  5. Virtanen AI, Winkler U. Effect of decrease in protein content of cells on the proteolytic enzyme system. Acta Chem Scand 1949; 3:272–278.

    Article  Google Scholar 

  6. Roche J, van Thoai N. Phosphatase alkaline. Adv Enzymol 1950; 10:83–122.

    Google Scholar 

  7. Torriani A. Effect of inorganic phosphate in the formation of phosphatases by E. coli. Fed Proc 1959; 18:339.

    Google Scholar 

  8. Torriani A. Effect of inorganic phosphate in the formation of phosphatases by E. coli. Biochim Biophys Acta 1960; 38:460–469.

    Article  Google Scholar 

  9. Horiuchi T, Horiuchi S, Mizuno D. A possible negative feedback phenomenon controlling formation of alkaline phosphorous esterase in Escherichia coli. Nature 1959; 183:1529–1530.

    Article  Google Scholar 

  10. Rothman F, Byrne R. Fingerprint analysis of alkaline phosphate of E. coli K12. J Mol Biol 1963; 6:330–340.

    Article  Google Scholar 

  11. Schlesinger MJ, Barrett K. The reversible dissociation of alkaline phosphatase of E. coli. J Biol Chem 1965; 240:4248–4292.

    Google Scholar 

  12. Schlesinger MJ, Reynolds JA, Schlesinger S. Formation and localization of the alkaline phosphatase of Escherichia coli. Ann N Y Acad Sci 1969; 166:368–379.

    Article  Google Scholar 

  13. Derman AL, Beckwith J. Escherichia coli alkaline phosphatase fails to acquire disulfide bonds when retained in the cytoplasm. J Bacteriol 1991; 173:7719–7722.

    Google Scholar 

  14. Dohan FC Jr, Rubman RH, Torriani A. In vitro synthesis of E. coli alkaline phosphatase monomers. J Mol Biol 1971; 58:469–471.

    Article  Google Scholar 

  15. Inouye H, Pratt C, Beckwith J et al. Alkaline phosphatase synthesis in a cell-free system using DNA and RNA templates. J Mol Biol 1977; 110:75–87.

    Article  Google Scholar 

  16. Garen A, Otsuji N. Isolation of a protein specified by a regulator gene. J Mol Biol 1964; 8:841–852.

    Article  Google Scholar 

  17. Makino D, Shinagawa H, Nakata A. Regulation of the phosphate regulon in Escherichia coli K12: regulation and role of the regulatory gene phoR. J Mol Biol 1985; 8:231–240.

    Article  Google Scholar 

  18. Makino K, Shinagawa H, Amemura M et al. Signal transduction in the phosphate regulon of Escherichia coli involves phosphotransfer between PhoR and PhoB proteins. J Mol Biol 1989; 210:551–559.

    Article  Google Scholar 

  19. Wanner BL, Latterell P. Mutants affected in alkaline phosphatase expression: evidence for multiple positive regulators for the phosphate regulon in Escherichia coli. Genetics 1980; 96:242–266.

    Google Scholar 

  20. Surin BP, Rosenberg H, Cox GB. Phosphate specific transport system of Escherichia coli: nucleotide sequence and gene-polypeptide relationship. J Bacteriol 1985; 161:189–198.

    Google Scholar 

  21. Echols H, Garen A, Garen S et al. Genetic control of repression of alkaline phosphatase in E. coli. J Mol Biol 1961; 3:425.

    Article  Google Scholar 

  22. Zuckier G, Torriani A. Genetic and physiological test of three phosphatespecific transport mutants of E. Coli. J Bacteriol 1981; 145:1249–1256.

    Google Scholar 

  23. Nakata A, Amemura M, Makino K et al. Genetic and biochemical analysis of the phosphate-specific transport system in E. coli. In: Torriani-Gorini A, Rothman F, Silver S et al, eds. Phosphate metabolism and cellular regulation in microorganisms. Washington: American Society for Microbiology, 1987:150–155.

    Google Scholar 

  24. Rosenberg H, Gerdes RG, Chegwidden K. Two systems for the uptake of phosphate in Escherichia coli. J Bacteriol 1977; 131:505–511.

    Google Scholar 

  25. Willsky GR, Malamy MH. Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli. J Bacteriol 1980; 144:356–365.

    Google Scholar 

  26. Lin ECC. Glycerol dissimilation and its regulation in bacteria. Ann Rev Microbiol 1976; 30:535–578.

    Article  Google Scholar 

  27. Argast M, Ludke D, Silhavy TU et al. A second transport system for sn-glycerol-3-phosphate in Escherichia coli. J Bacteriol 1978; 136:1070–1083.

    Google Scholar 

  28. Cox GB, Webb D, Godovan-Zimmerman J et al. Arg220 of the PstA protein is required for phosphate transport through the phosphate-specific transport system in E. coli but not for alkaline phosphatase repression. J Bacteriol 1988; 170:2283–2286.

    Google Scholar 

  29. Cox GB, Webb D, Rosenberg H. Specific amino acid residues in both the PstB and PstC proteins are required for phosphate transport by the E. coli Pst system. J Bacteriol 1989; 171:1531–1534.

    Google Scholar 

  30. Surin BP, Cox GB, Rosenberg H. Molecular studies on the phosphate-specific transport system of Escherichia coli. In: Torriani-Gorini A, Rothman FG, Silver S et al, eds. Phosphate metabolism and cellular regulation in microorganisms. Washington: American Society for Microbiology, 1987:145–149.

    Google Scholar 

  31. Muda M, Rao NN, Torriani A. The role of PhoU in phosphate transport and alkaline phosphatase regulation. J Bacteriol 1992; 174:8057–8064.

    Google Scholar 

  32. Steed PM, Wanner BL. Use of the rep technique for allele replacement to construct mutants with deletions of the pstSCAB-phoU Operon: evidence of a new role for the PhoU protein in the phosphate regulon. J Bacteriol 1993; 175:6797–6809.

    Google Scholar 

  33. Rao NN, Roberts MF, Torriani A et al. Effect of glpT and glpD mutations on expression of the phoA gene in Escherichia coli. J Bacteriol 1993; 175:74–79.

    Google Scholar 

  34. Zuckier G, Ingenito E, Torriani A. Pleiotropic effects of alkaline phosphatase regulatory mutations phoB and phoT on anaerobic growth of and polyphosphate synthesis in Escherichia coli. J Bacteriol 1980; 143:934–941.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 R.G. Landes Company

About this chapter

Cite this chapter

Torriani-Gorini, A. (1996). History of the Pho System. In: Regulation of Gene Expression in Escherichia coli . Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8601-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8601-8_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8603-2

  • Online ISBN: 978-1-4684-8601-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics