Skip to main content

Strategic Issues in Molecular Dynamics Simulations of Membranes

  • Chapter
Biological Membranes

Abstract

The heterogeneity associated with membrane systems poses a huge challenge for computer simulations of membrane dynamics and structure. Unlike proteins or nucleic acids with well-defined three-dimensional structures, membrane components such as lipid bilayers derive a vast majority of their properties and function from their fluid nature. This introduces the problem of setting up the correct bilayer model system for any realistic computer simulation. The model includes: choice of the system size; interatomic force fields; treatment of short and long-range interactions; and, most important, the macroscopic boundary conditions that best mimic experimental conditions. The simulation is thus an integral part of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht O, Gruler H, Sackman E (1978): Polymorphism of phospholipid bilayers. J Physique 39:301–313

    Article  CAS  Google Scholar 

  • Alper HE, Bassolino D, Stouch TR (1993a): Computer simulation of a phospholipid monolayer-water system. The influence of long range forces on water structure and dynamics. J Chem Phys 98:9798–9807

    Article  CAS  Google Scholar 

  • Alper HE, Bassolino-Klimas D, Stouch TR (1993b): The limiting behavior of water hydrating a phospholipid monolayer: A computer simulation study. J Chem Phys 99:5547–5559

    Article  CAS  Google Scholar 

  • Bakker G (1911): Theorie de la Couche Capillaire Plane dans les Corps Purs. Paris: Gauthier-Villars

    Google Scholar 

  • Berendsen HJC, Egberts B, Marrink S-J, Ahlstrom P (1992): Molecular dynamics simulations of phospholipid membranes and their interaction with phospholipase A2. In: Membrane Proteins: Structures, Interactions and Models, Pullman A, Jortner J, Pullman B, eds. Dordrecht, The Netherlands: Kluwer Academic Publishers

    Google Scholar 

  • Berendsen HJC, Grigera JR, Straatsma TP (1987): The missing term in effective pair potentials. J Chem Phys 91:6289–6291

    Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984): Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3689

    Article  CAS  Google Scholar 

  • Board JA Jr, Causey JW, Leathrum JR Jr, Windemuth A, Schulten K (1992): Accelerated molecular dynamics simulation with the parallel fast multipole algorithm. Chem Phys Lett 198:89

    Article  Google Scholar 

  • Chiu SW, Gulukota K, Jakobsson E (1992): Computational approaches to understanding the ion channel-lipid system. In: Membrane Proteins: Structures, Interactions, and Models, Pullman A, Jortner J, Pullman B, eds. Dordrecht, The Netherlands: Kluwer Academic Publishers

    Google Scholar 

  • Chiu SW, Clark M, Balajiv V, Subramaniam S, Scott HL, Jakobsson E (1995): Incorporation of surface tension into molecular dynamics simulation of an interface: A fluid phase lipid bilayer membrane. Biophys J 69:1230–1245

    Article  PubMed  CAS  Google Scholar 

  • Damodaran KV, Merz KM (1994): A comparison of DMPC- and DLPE-based lipid bilayers. Biophys J 66:1076–1087

    Article  PubMed  CAS  Google Scholar 

  • Darden T, York D, Pedersen L (1993): Particle mesh Ewald: An N · · log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  • Egberts E (1988): Molecular dynamics simulations of multibilayer membranes (dissertation). University of Groningen, Groningen, The Netherlands

    Google Scholar 

  • Egberts E, Marrink S J, Berendsen HJC (1994): Molecular dynamics simulation of a phospholipid membrane. Eur Biophys J 22:423–436

    Article  PubMed  CAS  Google Scholar 

  • Flewelling RF, Hubbell WL (1986): The membrane dipole potential in a total membrane potential model. Applications to hydrophobic ion interactions with membranes. Biophys 7 49:541–552

    Article  Google Scholar 

  • Helfrich P, Jakobsson E (1990): Calculation of deformation energies and conformations in lipid membranes containing gramicidin channels. Biophys J 57:1075–1084

    Article  PubMed  CAS  Google Scholar 

  • Heller H, Schaefer M, Schulten K (1993): Molecular dynamics simulation of a bilayer of 200 lipids in the gel and in the liquid-crystal phases. J Phys Chem 97:8343–8360

    Article  CAS  Google Scholar 

  • Hladky SB, Haydon DA (1973): Membrane conductance and surface potential. Biochim Biophys Acta 318:464–468

    Article  CAS  Google Scholar 

  • Huang P, Perez JJ, Loew GH (1994): Molecular dynamics simulations of phospholipid bilayers. J Biomol Struct Dyn 11:927–956

    Article  PubMed  CAS  Google Scholar 

  • Lee CY, McCammon JA, Rossky PJ (1984): The structure of liquid water at an extended hydrophobic surface. J Chem Phys 80:4448

    Article  CAS  Google Scholar 

  • MacDonald RC, Simon SA (1987): Lipid monolayer states and their relation to bilayers. Proc Natl Acad Sci USA 84:4089–4093

    Article  PubMed  CAS  Google Scholar 

  • Marrink SJ, Berendsen HJC (1994): Simulation of water transport through a lipid membrane. J Phys Chem 98:4155–4168

    Article  CAS  Google Scholar 

  • Marrink SJ, Berkowitz M, Berendsen HJC (1993): Molecular dynamics simulation of a membrane water interface—the ordering of water and its relation to the hydration force. Langmuir 9:3122–3131

    Article  CAS  Google Scholar 

  • McLaughlin S (1989): The electrostatic properties of membranes. Ann Rev Biophys Biophys Chem 18:113–136

    Article  CAS  Google Scholar 

  • McLaughlin S (1977): Electrostatic potentials at membrane-solution interfaces. Curr Top Membr Transp 9:71–144

    Article  CAS  Google Scholar 

  • Robinson AJ, Richards WG, Thomas PJ, Hann MM (1994): Head group and chain behavior in biological membranes: A molecular dynamics computer simulation. Biophys J 67:2345–2354

    Article  PubMed  CAS  Google Scholar 

  • Ryckaert JP, Bellemans A (1978): Molecular dynamics of liquid alkanes. Far Disc Chem Soc 66:95–106

    Article  Google Scholar 

  • Ryckaert JP, Bellemans A (1975): Molecular dynamics of liquid n-butane near its boiling point. Chem Phys Lett 30:123–125

    Article  CAS  Google Scholar 

  • Vehable RM, Zhang Y, Hardy BJ, Pastor RW (1993): Molecular dynamics simulations of a lipid bilayer and of hexadecane: An investigation of membrane fluidity. Science 262:223–226

    Article  Google Scholar 

  • von Heijne G (1994): Membrane proteins: From sequence to structure. Annu Rev Biophys Biomol Struct 23:167–192

    Article  Google Scholar 

  • White SH (1980): Small phospholipid vesicles: Internal pressure, surface tension, and surface free energy. Proc Natl Acad Sci USA 77:4048–4050

    Article  PubMed  CAS  Google Scholar 

  • Zhou F, Schulten K (1995): Molecular dynamics study of a membrane-water interface. J Phys Chem 99:2194–2208

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Jakobsson, E., Subramaniam, S., Scott, H.L. (1996). Strategic Issues in Molecular Dynamics Simulations of Membranes. In: Merz, K.M., Roux, B. (eds) Biological Membranes. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-8580-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8580-6_4

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-8582-0

  • Online ISBN: 978-1-4684-8580-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics