Skip to main content

Peripheral Membrane Proteins

  • Chapter
Biological Membranes

Abstract

The founding principle behind structural biology is that form equals function. Nowhere is this relation more apparent than in proteins that operate in environments in which aqueous and lipophilic phases meet. This biphasic environment strongly influences both the structure and function of these proteins. Membrane proteins can be classified as integral or peripheral, depending upon the nature of the protein-membrane association. For proteins in the former category, the membrane is an integral part of their structures, which are greatly perturbed by disruption of the membrane by detergents. The extent of interaction with the lipid bilayer is usually obvious by simple inspection of the protein structure because of what is known about lipid physical chemistry, i.e., that there is a large energy cost to burying uncompensated polar or charged protein residues in a strongly hydrophobic milieu. For example, the membrane-embedded portions of transmembrane proteins, such as bacterial reaction centers and porins, are localized by the extensive hydrophobic regions, which are frequently bordered by aromatic side-chains, found on the surfaces of these proteins. For these transmembrane proteins, whose functional roles are to transfer energy or substances from one aqueous pool to another across a nonaqueous barrier, the membrane serves to organize the protein structure. In contrast to integral membrane proteins, those classified as peripheral can be released from their membrane attachment through gentler means, without disruption of either membrane or protein structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abousalham A, Riviere M, Teissere M, Verger R (1993): Improved purification and biochemical characterization of phospholipase D from cabbage. Biochim Biophys Acta 1158:1–7

    PubMed  CAS  Google Scholar 

  • Ackermann EJ, Kempner ES, Dennis EA (1994): Ca2+-independent cytosolic phospholipase A2 from macrophage-like P388D1 cells. Isolation and characterization.J Biol Chem 269:9227–9233

    PubMed  CAS  Google Scholar 

  • Ames JB, Porumb T, Tanaka T, Ikura M, Stryer L (1995): Amino-terminal myristoylation induces cooperative calcium binding to recoverin.J Biol Chem 270:4526–4533

    PubMed  CAS  Google Scholar 

  • Ames JB, Tanaka T, Stryer L, Ikura M (1994): Secondary structure of myristoylated recoverin determined by three-dimensional heteronuclear NMR: implications for the calcium-myristoyl switch. Biochemistry 33:10743–10753

    PubMed  CAS  Google Scholar 

  • Andree HAM, Stuart MCA, Hermens W, Reutelingsperger CPM, Hemker HC, Frederik PM, Willems GM (1992): Clustering of lipid-bound annexin-V may explain its anticoagulant effect.J Biol Chem 267:17907–17912

    PubMed  CAS  Google Scholar 

  • Artursson E, Puu G (1992): A phosphatidylinositol-specific phospholipase C from Cytophaga: Production, purification, and properties. Can J Microbiol 38:1334–1337

    CAS  Google Scholar 

  • Berridge MJ (1986): Phosphoinositides and receptor mechanisms. In: Receptor Biochemistry and Methodology, Putney JW, ed. New York: Alan Liss

    Google Scholar 

  • Bewley MC, Boustead CM, Walker JH, Waller DA, Huber R (1993): Structure of chicken annexin V at 2.25-Å resolution. Biochemistry 32:3923–3929

    PubMed  CAS  Google Scholar 

  • Billah MM, Anthes JC (1990): The regulation and cellular functions of PC hydrolysis. Biochem J 269:281–291

    PubMed  CAS  Google Scholar 

  • Blackwood RA, Ernst JD (1990): Characterization of Ca2+-dependent phospholipid binding, vesicle aggregation and membrane fusion by annexins. Biochem J 266:195–200

    PubMed  CAS  Google Scholar 

  • Blow D (1991): Lipases reach the surface. Nature 351:444–445

    PubMed  CAS  Google Scholar 

  • Borowski M, Furie BC, Bauminger S, Furie B (1986): Prothrombin requires two sequential metal-dependent conformational transition to bind phospholipid. J Biol Chem 261:14969–14975

    PubMed  CAS  Google Scholar 

  • Bourne Y, Martinez C, Kerfelec B, Lombardo D, Chapus C, Cambillau C (1994): Horse pancreatic lipase. The crystal structure refined at 2.3 Å resolution.J Mol Biol 238:709–732

    PubMed  CAS  Google Scholar 

  • Brady L, Brzozowksi AM, Derewenda ZS, Dodson E, Dodson G, Tolley S, Turkenberg JP, Christiansen L, Huge-Jensen B, Norskov L, Thim L, Menge U (1990): A serine protease forms the catalytic centre of a triacylglycerol lipase. Nature 343:767–770

    PubMed  CAS  Google Scholar 

  • Brisson A, Mosser G, Huber R (1991): Structure of soluble and membrane-bound human annexin V.J Mol Biol 220:199–203

    PubMed  CAS  Google Scholar 

  • Brunie S, Bolin J, Gewirth D, Sigler PB (1985): The refined crystal structure of dimeric phospholipase A2 at 2.5 Å. Access to a shielded catalytic center.J Biol Chem 260:9742–9749

    PubMed  CAS  Google Scholar 

  • Brzozowski AM, Derewenda U, Derewenda ZS, Dodson GG, Lawson DM, Turkenberg JP, Bjorkling F, Huge-Jensen B, Patkar SA, Thim L (1991): A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature 351:491–494

    PubMed  CAS  Google Scholar 

  • Camilli A, Goldfine H, Portnoy DA (1991): Listeria monocytogenes mutants lacking Pi-specific phospholipase C are equivalent. J Exp Med 173:751–754

    PubMed  CAS  Google Scholar 

  • Clark JD, Lin L, Kriz RW, Ramesha CS, Sultzman LA, Lin AY, Milona N, Knopf JL (1991) A novel arachidonic acid-selective cytosolic PLA2 contains a Ca-dependent translocation domain with homology to PKC and GAP. Cell 65:1043–1051

    PubMed  CAS  Google Scholar 

  • Clark MA, Shorr RGL, Bomalski JS (1986): Antibodies prepared to Bacillus cereus phospholipase C crossreact with a phosphatidylcholine preferring phospholipase C in mammalian cells. Biochem Biophys Res Commun 140:114–119

    PubMed  CAS  Google Scholar 

  • Concha NO, Head JF, Kaetzel MA, Dedman JR, Seaton BA (1993): Rat annexin V crystal structure: Ca2+-induced conformational changes. Science 261:1321–1324

    PubMed  CAS  Google Scholar 

  • Concha NO, Head JF, Kaetzel MA, Dedman JR, Seaton BA (1992): Annexin-V forms calcium dependent trimeric units on phospholipid vesicles. FEBS Lett 314:159–162

    PubMed  CAS  Google Scholar 

  • Creutz CE (1992): The annexins and exocytosis. Science 258:924–931

    PubMed  CAS  Google Scholar 

  • Crumpton MJ, Dedman JR (1990): Protein terminology tangle. Nature 345:212

    PubMed  CAS  Google Scholar 

  • De Haas GH, Bonsen PPM, Pieterson WA, Van Deenen LLM (1971): Studies on phospholipase A2 and its zymogen from porcine pancreas. Biochim Biophys Acta 239:252–266

    PubMed  Google Scholar 

  • Demange P, Voges D, Benz J, Liemann S, Göttig P, Berendes R, Burger A, Huber R (1994): Annexin V: the key to understanding ion selectivity and voltage regulation? Trends Biochem Sci 19:272–276

    PubMed  CAS  Google Scholar 

  • Dennis EA (1994): Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem 269:13057–13060

    PubMed  CAS  Google Scholar 

  • Derewenda U, Brzozowski AM, Lawson DM, Derewenda ZS (1992a): Catalysis at the interface: The anatomy of a conformational change in a triglyceride lipase. Biochemistry 31:1532–1541

    PubMed  CAS  Google Scholar 

  • Derewenda ZS, Derewenda U, Dodson GG (1992b): The crystal and molecular structure of the Rhizomucor miehei triglyceride lipase at 1.9 Â resolution. J Mol Biol 227:818–839

    PubMed  CAS  Google Scholar 

  • Derewenda U, Swenson L, Green R, Wei Y, Dodson GG, Yamaguchi S, Haas MJ, Derewenda ZS (1994): An unusual buried polar cluster in a family of fungal lipases. Nature Struct Biol 1:36–47

    PubMed  CAS  Google Scholar 

  • Dijkstra BW, Kalk KH, Hol WGJ, Drenth J (1981): Structure of porcine pancreatic phospholipase A2 at 1.7 Å resolution. J Mol Biol 147:97–123

    PubMed  CAS  Google Scholar 

  • Dijkstra BW, Renetseder R, Kalk KH, Hol WGJ, Drenth J (1983): Structure of porcine pancreatic phospholipase A2 at 2.6 Å resolution and comparison with bovine phospholipase A2.J Mol Biol 168:163–179

    PubMed  CAS  Google Scholar 

  • Dizhoor AM, Chen CK, Olshevskaya E, Sinelnikova VV, Phillipov P, Hurley JB (1993): Role of the acylated amino terminus of recoverin in Ca2+-dependent membrane interaction. Science 259:829–832

    PubMed  CAS  Google Scholar 

  • Dodson GG, Lawson DM, Winkler FK (1992): Structural and evolutionary relationships in lipase mechanism and activation. Faraday Discuss 93:95–105

    PubMed  CAS  Google Scholar 

  • Evans TC Jr, Nelsestuen GL (1994): Calcium and membrane-binding properties of monomeric and multimeric annexin II. Biochemistry 33:13231–13238

    PubMed  CAS  Google Scholar 

  • Exton J (1990): Signaling through PC breakdown.J Biol Chem 265:1–4

    PubMed  CAS  Google Scholar 

  • Ferguson JE, Hanley MR (1992): Phosphatidic acid and lysophosphatidic acid stimulate receptor-regulated membrane currents. Arch Biochem Biophys 297:388–392

    PubMed  CAS  Google Scholar 

  • Flaherty KM, Zozulya S, Stryer L, McKay DB (1993): Three-dimensional structure of recoverin, a calcium sensor in vision. Cell 75:709–716

    PubMed  CAS  Google Scholar 

  • Freedman SJ, Furie BC, Furie B, Baleja JD (1995a): Structure of the metal-free τ-carboxyglutamic acid-rich membrane binding region of factor IX by two-dimensional NMR spectroscopy. J Biol Chem 270:7980–7987

    PubMed  CAS  Google Scholar 

  • Freedman SJ, Furie BC, Furie B, Baleja JD (1995b): Structure of the Ca2+-bound τ-carboxyglutamic acid-rich factor IX. Biochemistry: in press

    Google Scholar 

  • Fremont DH, Anderson DH, Wilsom IA, Dennis EA, Xuong NH (1993): Crystal structure of phospholipase A2 from Indian cobra reveals a trimeric association. Proc Natl Acad Sci USA 90:342–346

    PubMed  CAS  Google Scholar 

  • Furie B, Furie BC (1988): The molecular basis of blood coagulation. Cell 53:505–518

    PubMed  CAS  Google Scholar 

  • Geisow MJ, Walker JH (1986): New proteins involved in cell regulation by Ca2+ and phospholipids. Trends Biol Sci 11:420–423

    CAS  Google Scholar 

  • Goossens ELJ, Reutelingsperger CPM, Jongsma FHM, Kraayenhof R, Hermens W (1995): Annexin V perturbs or stabilises phospholipid membranes in a calcium-dependent manner. FEBS Lett 359:155–158

    PubMed  CAS  Google Scholar 

  • Gray-Kellor MP, Polans AS, Palczewski K, Detwiler PB (1993): The effect of recoverin-like calcium-binding proteins on the photo response of retinal rods. Neuron 10:523–531

    Google Scholar 

  • Griffith OH, Volwerk JJ, Kuppe A (1991): Phosphatidylinositol-specific phospholipase C from Bacillus cereus and Bacillus thuringiensis. Melh Enzymol 197:493–502

    CAS  Google Scholar 

  • Grochulski P, Li Y, Schräg JD, Bouthillier F, Smith P, Harrison D, Rubin B, Cygler M (1993): Insights into interfacial activation from an open structure of Candida rugosa lipase.J Biol Chem 268:12843–12847

    PubMed  CAS  Google Scholar 

  • Hansen S, Hansen LK, Hough E (1992): Crystal structures of phosphate, iodide, and iodate-inhibited phospholipase C from Bacillus cereus and structural investigations of the binding of reaction products and a substrate analogue. J Mol Biol 225:543–549

    PubMed  CAS  Google Scholar 

  • Hansen S, Hough E, Svensson LA, Wong Y-L, Martin SF (1993): Crystal structure of phospholipase C from Bacillus cereus complexed with a substrate analog. J Mol Biol 234:179–187

    PubMed  CAS  Google Scholar 

  • Hazen SL, Gross RW (1993): The specific association of a phosphofructokinase isoform with myocardial calcium-independent phospholipase A2.J Biol Chem 268:9892–9900

    PubMed  CAS  Google Scholar 

  • Head JF (1994): Shedding light on recoverin. Curr Biol 4:64–66

    PubMed  CAS  Google Scholar 

  • Head JF (1992): A better grip on calmodulin. Curr Biol 2:609–611

    PubMed  CAS  Google Scholar 

  • Heinz DW, Ryan M, Bullock TL, Griffith OH (1995): Crystal structure of the phosphatidylinositol-specific phospholipase C from Bacillus cereus in complex with myoinositol. EMBO J: in press

    Google Scholar 

  • Hilkman H, de Widt J, Vander Bend R (1991): Phospholipid metabolism in bradykinin-stimulated human fibroblasts. J Biol Chem 266:10344–10350

    Google Scholar 

  • Hjorth A, Carrière F, Cudrey C, Wöoldike H, Boel E, Lawson DM, Ferrato F, Cambillau C, Dodson GG, Thim L, Verger R (1993): A structural domain (the lid) found in pancreatic lipases is absent in the guinea pig (phospho)lipase. Biochemistry 32:4702–4707

    PubMed  CAS  Google Scholar 

  • Hoekstra D, Buist-Arkema R, Klappe K, Reutelingsperger CPM (1993): Interaction of annexins with membranes: the N-terminus as a governing parameter as revealed with a chimeric annexin. Biochemistry 32:14194–14202

    PubMed  CAS  Google Scholar 

  • Hough E, Hansen LK, Birknes B, Jynge K, Hansen S, Hordvik A, Little C, Dodson E, Derewenda Z (1989): High-resolution (1.5 Å) crystal structure of phospholipase C from Bacillus cereus. Nature 338:357–360

    PubMed  CAS  Google Scholar 

  • Huber R, Berendes R, Burger A, Schneider M, Karshikov A, Luecke H, Römisch J, Pâques E (1992): Crystal and molecular structure of human annexin V after refinement. J Mol Biol 223:683–704

    PubMed  CAS  Google Scholar 

  • Huber R, Römisch J, Pâques E-P (1990): The crystal and molecular structure of human annexin V, an anticoagulant protein that binds to calcium and membranes. EMBO J 9:3867–3974

    PubMed  CAS  Google Scholar 

  • Ikezawa H, Taguchi T (1981): Phosphatidylinositol-specific phospholipase C from Staphylococcus aureus. Meth Enzymol 71:731–741

    CAS  Google Scholar 

  • Ishizaki J, Hanasaki K, Higashino K, Kishino J, Kibuchi N, Ohara O, Arita H (1994): Molecular cloning of pancreatic group I phospholipase A2 receptor. J Biol Chem 269:5897–5904

    PubMed  CAS  Google Scholar 

  • Jacobs M, Freedman SJ, Furie BC, Furie B (1994): Membrane binding properties of the factor IX γ-carboxyglutamic acid-rich domain prepared by chemical synthesis. J Biol Chem 269:25494–25501

    PubMed  CAS  Google Scholar 

  • Jager K, Stieger S, Brodbeck U (1991): Cholinesterase solubilizing factor from Cytophaga sp. is a Pi-specific phospholipase C. Biochem Biophys Acta 1074:45–51

    PubMed  CAS  Google Scholar 

  • Jalink K, Van Corven EJ, Moolenaar WH (1990): Lysophosphatidic acid, but not phosphatidic acid, is a potent Ca2+-mobilizing stimulus for fibroblasts. Evidence for an extracellular site of action.J Biol Chem 265:12232–12239

    PubMed  CAS  Google Scholar 

  • Johansen T, Holm T, Guddal PH, Sletten K, Haugli FB, Little C (1988): Cloning and sequencing of the gene encoding the phosphatidylcholine-preferring phospholipase C of Bacillus cereus. Gene 65:293–304

    PubMed  CAS  Google Scholar 

  • Joseph D, Petsko GA, Karplus M (1990): Anatomy of a conformation-al change: hinged “lid” motion of the triosephosphate isomerase loop. Science 249:1425–1428

    PubMed  CAS  Google Scholar 

  • Jost M, Weber K, Gerke V (1994): Annexin II contains two types of Ca2+-binding sites. Biochem J 298:553–558

    PubMed  CAS  Google Scholar 

  • Kaetzel MA, Hazarika P, Dedman JR (1989): Differential tissue expression of three 35 kDa annexin calcium-dependent phospholipid-binding proteins.J Biol Chem 264: 14463–14470

    PubMed  CAS  Google Scholar 

  • Karshikov A, Berendes R, Burger A, Cavalié, A, Lux HD, Huber R (1992): Annexin V membrane interaction: an electrostatic potential study. Eur Biophys J 20:337–344

    CAS  Google Scholar 

  • Katan M, Kriz RW, Totty N, Meldrum E, Aldape RA, Knopf JL, Parker PJ (1988): Determination of the primary structure of PLC-154 demonstrates diversity of phosphoinositide-specific phospholipase C activities. Cell 54:171–177

    PubMed  CAS  Google Scholar 

  • Kramer RM, Roberts EF, Manetta J, Putnam JE (1991): The Ca2+-sensitive cytosolic phospholipase A2 is a 100 kDa protein in human monoblast U937.J Biol Chem 266:5268–5272

    PubMed  CAS  Google Scholar 

  • Kudo I, Murakami M, Hara S, Inoue K (1993): Mammalian non-pancreatic phospholipase A2. Biochim Biophys Acta 1117:217–231

    Google Scholar 

  • Lawson DM, Brzozowski AM, Rety S, Verma C, Dodson GG (1994): Probing the nature of the substrate binding site in Humicola lanuginosa lipase through X-ray crystallography and intuitive modelling. Prot Engin 7:543–550

    CAS  Google Scholar 

  • Lee KY, Ryu SH, Suh PG, Choi WC, Rhee SG (1987): Phospholipase C associated with particulate fractions of bovine brain. Proc Natl Acad Sci USA 84:5540–5544

    PubMed  CAS  Google Scholar 

  • Leimeister-Wächter M, Domann E, Chakraborty T (1991): Detection of a gene-encoding Pi-specific phospholipase C that is coordinately expressed with listeriolysin in Listeria monocytogenes. Mol Microbiol 5:361–366

    PubMed  Google Scholar 

  • Levine L, Xiao DM, Little C (1987): Increased arachidonic acid metabolites from cells in culture after treatment with phospholi-pase C from Bacillus cereus. Prostaglandins 34:633–642

    PubMed  CAS  Google Scholar 

  • Lewis K, Garigapati V, Zhou C, Roberts MF (1993). Substrate requirements of bacterial phosphatidylinositol-specific phospholipase C. Biochemistry 32:8836–8841

    PubMed  CAS  Google Scholar 

  • Liemann S, Lewit-Bentley A (1995): Annexins: a novel family of calcium- and membrane-binding proteins in search of a function. Structure 3:233–237

    PubMed  CAS  Google Scholar 

  • Little C (1981): Effect of some divalent metal cations on phospholipase C from Bacillus cereus. Acta Chem Scand B35:39–44

    CAS  Google Scholar 

  • Little C, Johansen S (1979): Unfolding and refolding of phospholipase C in solutions of guanidium chloride. Biochem J 179:509–514

    PubMed  CAS  Google Scholar 

  • Low, MG (1981): Phosphatidylinositol-specific phospholipase C from Bacillus thuringiensis. Meth Enzymol 71:741–746

    PubMed  CAS  Google Scholar 

  • Majerus PW (1992): Inositol phosphate biochemistry. Annu Rev Biochem 61:225–250

    PubMed  CAS  Google Scholar 

  • Martin SF, Wong Y-L, Wagman AS (1994): Design, synthesis and evolution of phospholipid analogues as inhibitors of the bacterial phospholipase C from Bacillus cereus. J Org Chem 59:4821–4831

    CAS  Google Scholar 

  • Martinez C, De Geus P, Lauwereys M, Matthyssens G, Cambillau C (1992): Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent. Nature 356:615–618

    PubMed  CAS  Google Scholar 

  • Martinez C, Nicolas A, van Tilbeurgh H, Egloff M-P, Cudrey C, Verger R, Cambillau C (1994): Cutinase, a lipolytic enzyme with a preformed oxyanion hole. Biochemistry 33:83–89

    PubMed  CAS  Google Scholar 

  • Meers P, Mealy T (1994): Phospholipid determinants for annexin V binding sites and the role of tryptophan 187. Biochemistry 33:5829–5837

    PubMed  CAS  Google Scholar 

  • Meers P, Mealy T (1993): Relationship between annexin V tryptophan exposure, calcium, and phospholipid binding. Biochemistry 32:5411–5418

    PubMed  CAS  Google Scholar 

  • Mengaud J, Braun-Breton C, Cossart P (1991): Identification of phosphatidylinositol-specific phospholipase C activity in Listeria monocytogenes: A novel type of virulence factor? Mol Microbiol 5:367–372

    PubMed  CAS  Google Scholar 

  • Moolenaar WH (1994): LPA: a novel lipid mediator with diverse biological actions. Trends Cell Biol 4:213–219

    PubMed  CAS  Google Scholar 

  • Moss SE, ed. (1992): The Annexins. London: Portland

    Google Scholar 

  • Mosser G, Ravanat C, Freyssinet J-M, Brisson A (1991): Sub-domain structure of lipid-bound annexin-V resolved by electron image analysis. J Mol Biol 217:241–245

    PubMed  CAS  Google Scholar 

  • Murayama T, Ui M (1987): Phosphatidic acid may stimulate membrane receptors mediating adenylate cyclase inhibition and phospholipid breakdown in 3T3 fibroblasts.J Biol Chem 262:5522–5529

    PubMed  CAS  Google Scholar 

  • Newman R, Tucker AD, Ferguson C, Tsernoglou D, Leonard K, Crumpton MJ (1989): Crystallization of p68 on lipid monolayers and as three-dimensional crystals.J Mol Biol 206:213–219

    PubMed  CAS  Google Scholar 

  • Noble MEM, Cleasby A, Johnson LN, Egmond MR, Frenken LGJ (1993): The crystal structure of a triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate. FEBS Lett 331:123–128

    PubMed  CAS  Google Scholar 

  • Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Sussman JL, Verschueren KHG, Goldman A (1992): The α/β hydrolase fold. Prot Engin 5:197–211

    CAS  Google Scholar 

  • Pelech SL, Vance DE (1989): Signal transduction via phosphatidylcholine cycles. Trends Biochem Sci 14:28–30

    CAS  Google Scholar 

  • Pepinsky RB, Tizard R, Mattaliano RJ, Sinclair LK, Miller GT, Browning JL, Chow EP, Burne C, Huang K-S, Pratt D, Wächter L, Hession C, Frey AZ, Wallner BP (1988): Five distinct calcium and phospholipid binding proteins share homology with lipocortin I. J Biol Chem 263:10799–10811

    PubMed  CAS  Google Scholar 

  • Pieterson JC, Vidal JC, Volwerk JJ, DeHaas GH (1974): Zymogen-catalyzed hydrolysis of monomeric substrates and the presence of a recognition site for lipid-water interfaces in phospholipase A2. Biochemistry 13:1455–1460

    PubMed  CAS  Google Scholar 

  • Pigault C, Follenius-Wund A, Schmutz M, Freyssinet J-M, Brisson A (1994): Formation of two-dimensional arrays of annexin V on phosphatidylserine-containing liposomes. J Mol Biol 236:199–208

    PubMed  CAS  Google Scholar 

  • Pollard HB, Guy HR, Arispe N, de la Fuente M, Lee G, Rojas EM, Pollard JR, Srivastava M, Zhang-Keck Z-Y, Merezhinskaya N, Caohuy H, Burns AL, Rojas E (1992): Calcium channel and membrane fusion activity of synexin and other members of the annexin gene family. Biophys J 62:15–18

    PubMed  CAS  Google Scholar 

  • Raynal P, Pollard, HB (1994): Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biophys Biochim Acta 1197:63–93

    CAS  Google Scholar 

  • Renetseder R, Dijkstra BW, Huizing K, Kalk KH, Drenth J (1988): Crystal structure of bovine pancreatic phospholipase A2 covalently inhibited by p-bromo-phenacyl-bromide.J Mol Biol 200:181–188

    PubMed  CAS  Google Scholar 

  • Reynolds LJ, Hughes LL, Louis AI, Kramer RM, Dennis EA (1993): Metal ion and salt effects on the phospholipase A2, lysophospholipase, and transacylase activities of human cytosolic phospholipase A2. Biochim Biophys Acta 1167:272–280

    PubMed  CAS  Google Scholar 

  • Rhee SG, Choi KD (1992a): Regulation of inositol phospholipid-specific phospholipase C isozymes.J Biol Chem 267:12393–12396

    PubMed  CAS  Google Scholar 

  • Rhee SG, Choi KD (1992b): Multiple forms of phospholipase C isozymes and their activation mechanisms. Adv Second Messenger Phosphoprot Res 26:35–61

    CAS  Google Scholar 

  • Rhee SG, Suh PG, Ryu S-H, Lee KY (1989): Studies of inositol phospholipid-specific phospholipase C. Science 244:546–550

    PubMed  CAS  Google Scholar 

  • Roberts MF (1991): Using short-chain phospholipids to assay phospholipases. Meth Enzymol 197:95–112

    PubMed  CAS  Google Scholar 

  • Roberts MF, Dennis EA (1989): The role of phospholipases in phosphatidylcholine catabolism. In: Phosphatidylcholine Metabolism, Vance DE, ed. New York: CRC Press

    Google Scholar 

  • Roholt O, Schlamowitz M (1961): L-α-(dicaproyl)lecithin, a soluble substrate for lecithinase A and D. Arch Biochem Biophys 94:364–379

    PubMed  CAS  Google Scholar 

  • Russo-Marie F (1992): Annexins, phospholipase A2 and the glucocorticoids. In: The Annexins, Moss S, ed. New York: Portland Press

    Google Scholar 

  • Salmon DM, Honeyman TW (1980): Proposed mechanism of cholinergic action in smooth muscle. Nature 284:344–345

    PubMed  CAS  Google Scholar 

  • Schrag JD, Li Y, Wu S, Cygler M (1991): Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum. Nature 351:761–764

    PubMed  CAS  Google Scholar 

  • Scott D, White SP, Browning JL, Rosa JJ, Gelb MH, Sigler PB (1991): Structures of free and inhibited human secretory phospholipase A2 from inflammatory exudate. Science 254:1007–1010

    PubMed  CAS  Google Scholar 

  • Scott D, White SP, Otwinowski Z, Yuan W, Gelb M, Sigler PB (1990): Interfacial catalysis: the mechanism of phospholipase A2. Science 250:1541–1546

    PubMed  CAS  Google Scholar 

  • Seaton BA, ed. (1996): Annexins: Molecular Structure to Cellular Function, Austin, TX: R G Landes Company

    Google Scholar 

  • Sharp JD, Pickard RT, Chiou XG, Manetta JV, Kovacevic S, Miller JR, Roberts EF, Strifler BA, Brems DN, Kramer RM (1994): Serine 228 is essential for catalytic activities of 85-kDa cytosolic phospholipase A2.J Biol Chem 269:23250–23254

    PubMed  CAS  Google Scholar 

  • Soltys CE, Bian J, Roberts, MF (1993): Polymerizable phosphatidylcholines: Importance of phospholipid motions for optimum phospholipase A2 and C activity. Biochemistry 32:9545–9552

    PubMed  CAS  Google Scholar 

  • Sopkova J, Renouard M, Lewit-Bentley A (1993): The crystal structure of a new high-calcium form of annexin V.J Mol Biol 234:816–825

    PubMed  CAS  Google Scholar 

  • Soriano-Garcia M, Padmanabhan K, de Vos A, Tulinsky A (1992): The Ca2+ ion and membrane binding structure of the Gla domain of Ca-prothrombin fragment 1. Biochemistry 31:2554–2566

    PubMed  CAS  Google Scholar 

  • Sundell S, Hansen S, Hough E (1994): A proposal for the catalytic mechanism in phospholipase C based on interaction energy and distance geometry calculations. Prot Engin 7:571–577

    CAS  Google Scholar 

  • Sunnerhagen M, Forsén S, Hoffren A-M, Drakenberg T, Teleman O, Stenflo J (1995): Structure of the Ca2+-free Gla domain sheds light on membrane binding of blood coagulation proteins. Nature Struct Biol 2:968–974

    Google Scholar 

  • Swairjo MA, Seaton BA (1995): unpublished data

    Google Scholar 

  • Swairjo MA, Seaton BA (1994): Annexin structure and membrane interactions: a molecular perspective. Ann Rev Biophys Biomol Struct 23:193–213

    CAS  Google Scholar 

  • Swairjo MA, Concha NO, Kaetzel MA, Dedman JR, Seaton BA (1995): Ca2+-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nature Struct Biol 2:968–974

    PubMed  CAS  Google Scholar 

  • Swairjo MA, Roberts MF, Campos M-B, Dedman JR, Seaton BA (1994): Annexin V binding to the outer leaflet of small unilamellar vesicles leads to altered inner-leaflet properties: 31P- and 1H-NMR studies. Biochemistry 33:10944–10950

    PubMed  CAS  Google Scholar 

  • Taguchi R, Ikezawa H (1978): PI-specific PLC from colestium. Arch Biochem Biophys 186:196–201

    PubMed  CAS  Google Scholar 

  • Tait JF, Gibson D, Fujikawa K (1989): Phospholipid binding properties of human placental anticoagulant protein-I, a member of the lipocortin family.J Biol Chem 264:7944–7949

    PubMed  CAS  Google Scholar 

  • Tanaka T, Ames JB, Harvey TS, Stryer L, Ikura M (1995): Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium free state. Nature 376:444–447

    PubMed  CAS  Google Scholar 

  • Thunnissen MMGM, Kalk KH, Drenth J, Dijkstra BW (1990): Structure of an engineered porcine phospholipase A2 with enhanced activity at 2.1 Á resolution. J Mol Biol 216:425–439

    PubMed  CAS  Google Scholar 

  • Uppenberg J, Hansen MT, Patkar S, Jones TA (1994): The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure 2:293–308

    PubMed  CAS  Google Scholar 

  • Van Blitterswijk, Hilkmann H (1993): Rapid attenuation of receptor-induced diacylglycerol and phosphatidic acid by phospholipase D-mediated transphosphorylation: Formation of bisphosphatidic acid. EMBO J 12:2655–2662

    PubMed  Google Scholar 

  • van Tilbeurgh H, Egloff M-P, Martinez C, Rugani N, Verger R, Cambillau C (1993): Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography. Nature 362:814–820

    PubMed  Google Scholar 

  • van Tilbeurgh H, Roussel A, Lalouel J-M, Cambillau C (1994): Lipoprotein lipase. Molecular model based on the pancreatic lipase X-ray structure: Consequences for heparin binding and catalysis. J Biol Chem 269:4626–4633

    PubMed  Google Scholar 

  • van Tilbeurgh H, Sarda L, Verger R, Cambillau C (1992): Structure of the pancreatic lipase-procolipase complex. Nature 359:159–162

    PubMed  Google Scholar 

  • Vega QC, Cochet C, Filhol O, Chang CP Rhee SG, Gill GN (1992): A site of tyrosine phosphorylation in the C terminus of the epidermal growth factor receptor is required to activate phospholipase C. Mol Cell Biol 12:128–135

    PubMed  CAS  Google Scholar 

  • Verheij HM, Slotboom AJ, De Haas GH (1981): Phospholipase A2: a model for membrane-bound enzymes. Rev Physiol Pharmacol 91:91–203

    CAS  Google Scholar 

  • Voges D, Berendes R, Burger A, Demange P, Baumeister W, Huber H (1994): Three-dimensional structure of membrane-bound annexin V, a correlative electron microscopy X-ray crystallography study.J Mol Biol 238:199–213

    PubMed  CAS  Google Scholar 

  • Volwerk JJ, Shashidhar MS, Kuppe A (1990): Pi-specific PLC from Bacillus cereus combines intrinsic phosphotransferase and cyclic phosphodiesterase activities: A 31-NMR study. Biochemistry 29:8056–8062

    PubMed  CAS  Google Scholar 

  • Wery J-P, Schevitz RW, Clawson DK, Bobbitt JL, Dow ER, Gamboa G, Goodson T, Hermann RB, Kramer RM, McClure DB, Mihelich ED, Putnam JE, Sharp JD, Stark DH, Teater C, Warrick MW, Jones ND (1991): Structure of recombinant human rheumatoid arthritic synovial fluid phospholipase A2 at 2.2 Å resolution. Nature 352:79–82

    PubMed  CAS  Google Scholar 

  • Wells MA (1974): The mechanism of interfacial activation of phospholipase A2. Biochemistry 13:2248–2257

    PubMed  CAS  Google Scholar 

  • Weng X, Luecke H, Song IS, Kang DS, Kim S-H, Huber R (1993): Crystal structure of human annexin I at 2.5 Å resolution. Protein Science 2:448–458

    PubMed  CAS  Google Scholar 

  • White SP, Scott DL, Otwinowski Z, Gelb MH, Sigler PB (1990): Crystal structure of cobra venom phospholipase A2 in a complex with a transition state analogue. Science 250:1560–1563

    PubMed  CAS  Google Scholar 

  • Winkler FK, D-Arcy A, Hunziker W (1990): Structure of human pancreatic lipase. Nature 343:771–774

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Seaton, B.A., Roberts, M.F. (1996). Peripheral Membrane Proteins. In: Merz, K.M., Roux, B. (eds) Biological Membranes. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-8580-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8580-6_12

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-8582-0

  • Online ISBN: 978-1-4684-8580-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics