Skip to main content

Computational Refinement Through Solid State NMR and Energy Constraints of a Membrane Bound Polypeptide

  • Chapter
Biological Membranes

Abstract

The determination of macromolecular structures in anisotropic environments such as membranes is vital to the field of structural biology. While solid state nuclear magnetic resonance spectroscopy (SSNMR) methods have been demonstrated for obtaining three dimensional structures of membrane bound polypeptides (Cross and Opella, 1983; Ketchem et al, 1993; Opella et al, 1987), computational refinement methods are needed for optimally utilizing these constraints in such a molecular environment. Methods for structural determination and refinement of macromolecules in solution have fully evolved (Briinger et al, 1986; Clore et al, 1985; Havel and Wüthrich, 1985), but the nature of the constraints obtained for membrane proteins are such that a new refinement procedure must be developed. Described here is such a technique that has the ability to optimize the structure of a membrane protein in order to best represent the experimental data and determine its high-resolution structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brünger AT, Clore GM, Gronenborn AM, Karplus M (1986): Three-dimensional structure of proteins determined by molecular dynamics with interproton distance restraints: Application to crambin. Proc Natl Acad Sci USA 83:3801–3805

    Article  PubMed  Google Scholar 

  • Bystrov VF, Arseniev AS, Barsukov IL, Lomize AL (1987): 2D NMR of single and double stranded helices of gramicidin A in micelles and solutions. Bull Magn Reson 8:84–94

    Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983): CHARMM: A program for macromolecular energy minimization and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  • Case DA, Wright PE (1993): Determination of high-resolution NMR structures of proteins. In: NMR of Proteins Clore GM, Gronenborn AM, eds. London: The Macmillan Press Ltd

    Google Scholar 

  • Clore GM, Gronenborn AM, Brünger AT, Karplus M (1985): Solution conformation of a heptadecapeptide comprising the DNA binding helix F of the cyclic AMP receptor protein of Escherichia coli. Combined use of 1H nuclear magnetic resonance and restrained molecular dynamics. J Mol Biol 186:435–55

    Article  PubMed  CAS  Google Scholar 

  • Cross TA, Opella SJ (1983): Protein structure by solid state NMR. J Am Chem Soc 105:306–308

    Article  CAS  Google Scholar 

  • Engh RA, Huber R (1991): Accurate bond and angle parameters for X-ray protein structure refinement. Acta Cryst A47:392–400

    CAS  Google Scholar 

  • Fields CG, Fields GB, Petefish J, Van Wart HE, Cross TA (1988): Solid phase peptide synthesis and solid state NMR spectroscopy of [Ala3–15N][Vall] gramicidin A Proc Nat Acad Sci USA 85:1384–1388

    Article  CAS  Google Scholar 

  • Havel TF, Wüthrich K (1985): An evaluation of the combined use of nuclear magnetic resonance and distance geometry for the determination of protein conformations in solution. J Mol Biol 182:281–294

    Article  PubMed  CAS  Google Scholar 

  • Hu W, Lee K-C, Cross TA (1993): Tryptophans in membrane proteins: indole ring orientations and functional implications in the gramicidin channel. Biochemistry 32:7035–7047

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey GA, Saenger W (1994): Hydrogen Bonding in Biological Structures. Berlin, Germany: Springer-Verlag

    Google Scholar 

  • Ketchem RR, Hu W, Cross TA (1993): High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science 261:1457–1460

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick S, Gelatt Jr CD, Vecchi MP (1983): Optimization by simulated annealing. Science 220:671–680

    Article  PubMed  CAS  Google Scholar 

  • Langs DA (1988): Three-dimensional structure at 0.86 Å of the uncomplexed form of the transmembrane ion channel peptide gramicidin A. Science 241:188–191

    Article  PubMed  CAS  Google Scholar 

  • Lazo ND, Hu W, Cross TA (1995): Low-temperature solid-state 15N NMR characterization of polypeptide backbone librations. J Mag Res Ser B 106:43–50

    Article  Google Scholar 

  • Lazo ND, Hu W, Lee K-C, Cross TA (1993): Rapidly-frozen polypeptide samples for characterization of high definition dynamics by solid-state NMR spectroscopy. Biochem Biophys Res Commun 197:904–909

    Article  PubMed  CAS  Google Scholar 

  • Lee K-C, Cross TA (1994): Side-chain structure and dynamics at the lipid-protein interface: Val1 of the gramicidin A channel. Biophys J 66:1380–1387

    Article  PubMed  CAS  Google Scholar 

  • Lee K-C, Huo S, Cross TA (1995): Lipid-peptide interface: Valine conformation and dynamics in the gramicidin channel. Biochemistry 34:857–867

    Article  PubMed  CAS  Google Scholar 

  • Logan TM, Zhou M-M, Nettesheim DG, Meadows RP, Van Etten RL, Fesik SW (1994): Solution structure of a low molecular weight protein tyrosine phosphatase. Biochemistry 33:11087–11096

    Article  PubMed  CAS  Google Scholar 

  • Lomize AL, Orechov VY, Arseniev AS (1992): Refinement of the spatial structure of the gramicidin A transmembrane ion-channel. Bioorg Khim 18:182–200

    PubMed  CAS  Google Scholar 

  • Mackerell AD Jr, Bashford D, Bellot M, Dunbrack RL, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Nguyen DT, Ngo T, Prodhom B, Roux B, Schlenkrich B, Smith J, Stote R, Straub J, Wiorkiewicz-Kuczera J, Karplus M (1992); Self-consistent parameterization of biomolecules for molecular modeling and condensed phase simulations. Biophys J 61: A143

    Google Scholar 

  • Mai W, Hu W, Wang C, Cross TA (1993): Orientational constraints as three-dimensional structural constraints from chemical shift anisotropy: The polypeptide backbone of gramicidin A in a lipid bilayer. Protein Sci 2:532–542

    Article  PubMed  CAS  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953): Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  CAS  Google Scholar 

  • Nicholson LK, Cross TA (1989): Gramicidin cation channel: An experimental determination of the right-handed helix sense and verification of the β-type hydrogen bonding. Biochemistry 28:9379–9385

    Article  PubMed  CAS  Google Scholar 

  • Nicholson LK, Teng Q, Cross TA (1991): Solid-state nuclear magnetic resonance derived model for dynamics in the polypeptide backbone of the gramicidin A channel. J Mol Biol 218:621–637

    Article  PubMed  CAS  Google Scholar 

  • North CL (1993): Peptide backbone librations of the gramicidin A transmembrane channel as measured by solid state nuclear magnetic resonance. Implications for proposed mechanisms of ion transport (dissertation). Tallahasee, FL: Florida State University

    Google Scholar 

  • North CL, Cross TA (1993): Analysis of polypeptide backbone T1 relaxation data using an experimentally derived model. J Mag Res Ser B 101:35–43

    Article  CAS  Google Scholar 

  • Opella SJ, Stewart PL, Valentine KG (1987): Protein structure by solid state NMR spectroscopy. Q Rev Biophys 19:7–49

    Article  PubMed  CAS  Google Scholar 

  • Pascal SM, Cross TA (1992) Structure of an isolated gramicidin A double helical species by high-resolution nuclear magnetic resonance. J Mol Biol 226:1101–1109

    Article  PubMed  CAS  Google Scholar 

  • Teng Q, Nicholson LK, Cross TA (1989): Experimental determination of torsion angles in the polypeptide backbone of the gramicidin A channel by solid state nuclear magnetic resonance. J Mol Biol 218:607–619

    Article  Google Scholar 

  • Urry DW (1971): The gramicidin A transmembrane channel: A proposed n(L,D) helix. Proc Natl Acad Sci USA 68:672–676

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Ketchem, R.R., Roux, B., Cross, T.A. (1996). Computational Refinement Through Solid State NMR and Energy Constraints of a Membrane Bound Polypeptide. In: Merz, K.M., Roux, B. (eds) Biological Membranes. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-8580-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8580-6_10

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-8582-0

  • Online ISBN: 978-1-4684-8580-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics