Skip to main content

Time Scales of Lipid Dynamics and Molecular Dynamics

  • Chapter
Biological Membranes

Abstract

It is finally possible to carry out a molecular dynamics (MD) computer simulation of a protein or peptide in a lipid bilayer. Simulation programs with reasonable potential energy parameters are readily available, computer workstations are affordable, and plausible initial conditions can be constructed by combining the polypeptide with lipid configurations taken from simulations of pure lipid bilayers. Clearly, there are many questions to ask. Does the protein somehow order the nearby lipids or perturb the water structure at the head-group/solution interface? If the membrane contains a mixture of lipids, do some selectively condense around the protein? What are the lateral diffusion constants and isomerization rates for the lipids and protein, and are they perturbed from the pure state? These sorts of effects might be important to the protein’s function, or they might modulate the rate that substrates pass through the bilayer. They could change the interfacial tension, making it easier for the membrane to bend or even fuse with another. A peptide with potential drug applications might disrupt the bilayer, aggregate to form channels, or bind to a membrane protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen MP, Tildesley DJ (1987): Computer Simulation of Liquids. Oxford: Clarendon

    Google Scholar 

  • Andersen HC (1980): Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72:2384–2393

    Article  CAS  Google Scholar 

  • Berne BJ, Pecora R (1976): Dynamic Light Scattering. New York: Wiley-Interscience

    Google Scholar 

  • Brasseur R, ed. (1990): Molecular Description of Biological Membrane Components by Computer Aided Conformational Analysis, Vol. I. Boca Raton: CRC Press

    Google Scholar 

  • Brooks CL, Pettitt BM, Karplus M (1988): Proteins: A Theoretical Perspective of Dynamics Structure, and Thermodynamics. New York: Wiley-Interscience

    Google Scholar 

  • Brown MF, Ribeiro AA, Williams GD (1983): New view of lipid bilayer dynamics from 2H and 13C relaxation time measurements. Proc Natl Acad Sei USA 80:4325–4329

    Article  CAS  Google Scholar 

  • Brown ML, Venable RM, Pastor RW (1995): Method for characterizing transition con-certedness from polymer dynamics computer simulations. Biopolymers 35:31–46

    Article  PubMed  CAS  Google Scholar 

  • Cevc G, Marsh D (1987): Phospholipid Bilayers. New York:Wiley-Interscience

    Google Scholar 

  • Chandler D (1977): Statistical mechanics of isomerization dynamics in liquids and the transition state approximation. J Chem Phys 68:2959–2970

    Article  Google Scholar 

  • Cherry RJ (1979): Rotational and lateral diffusion of membrane proteins. Biochem Bio-phys Acta 559:289–327

    CAS  Google Scholar 

  • Crow EL, Gardner RS (1959): Confidence intervals for the expectation of a Poisson variable. Biometrika 46:441–453

    Google Scholar 

  • de Gennes PG (1974): The Physics and Chemistry of Liquid Crystals. Oxford: Clarendon

    Google Scholar 

  • DeGroot MH (1975): Probability and Statistics. Reading, MA: Addison-Wesley

    Google Scholar 

  • De Loof H, Segrest JP, Harvey S, Pastor RW (1991): Mean field stochastic boundary molecular dynamics simulation of a phospholipid in a membrane. Biochemistry 30:2099–2113

    Article  PubMed  Google Scholar 

  • Ermak DL (1975): A computer simulation of charged particles in solution. I. Technique and equilibrium properties. J Chem Phys 62:4189–4196

    Article  CAS  Google Scholar 

  • Feller W (1950): An Introduction to Probability Theory and its Applications. New York: John Wiley and Sons

    Google Scholar 

  • Feller SE, Zhang Y, Pastor RW, Brooks BR (1995a): Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103:4613–4621

    Article  CAS  Google Scholar 

  • Feller SE, Zhang Y, Pastor RW (1995b): Computer simulations of liquid/liquid interfaces. II. Surface tension-area dependence of a bilayer and monolayer. J Chem Phys 103:10267–10276

    Article  CAS  Google Scholar 

  • Galla H-J, Hartmann W, Theilen U, Sackmann E (1979): On two-dimensional passive ranndom walks in lipid bilayers and fluid pathways in biomembranes. J Membrane Biol 48:215–236

    Article  CAS  Google Scholar 

  • Glaser M (1993): Lipid domains in biological membranes. Current Opinion in Structural Biology 3:475–481

    Article  CAS  Google Scholar 

  • Hanggi P, Talkner P, Borkovec M (1990): Reaction-rate theory: fifty years after Kramers. Rev Mod Phys. 62:251–341

    Article  Google Scholar 

  • Hardy BH, Pastor RW (1994): Conformational sampling of hydrocarbon and lipid chains in an ordering potential. J Comput Chem 15:208–226

    Article  CAS  Google Scholar 

  • Hoel PG, Port SC, Stone CJ (1972): Introduction to Stochastic Process. Boston: Houghton Mifflin

    Google Scholar 

  • Hoover WG (1985): Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    Article  PubMed  Google Scholar 

  • Katsaras J (1995): Structure of the subgel (Lc’) and gel (L β’ ) phases of oriented dipalmi-toylphosphatidylcholine multilayers. J Phys Chem 99:4141–4147

    Article  CAS  Google Scholar 

  • Lipari G, Szabo A (1980): Effect of librational motion on fluorescence depolarization and nuclear magnetic resonance relaxation in macromolecules and membranes. Biophys J 30:489–506

    Article  PubMed  CAS  Google Scholar 

  • Marqusee JA, Warner M, Dill KA (1984): Frequency dependence of NMR spin lattice relaxation in bilayer membranes. J Chem Phys 81:6404–6405

    Article  Google Scholar 

  • Martyna GJ, Tobias DL, Klein ML (1994): Constant pressure molecular dynamics algorithms. J Phys Chem. 101:4177–4189

    Article  CAS  Google Scholar 

  • Nagle JF (1993): Area/lipid of bilayers from NMR. Biophys J 64:1476–1481

    Article  PubMed  CAS  Google Scholar 

  • Nose S (1984): A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268

    Article  CAS  Google Scholar 

  • Nose S, Klein ML (1983): Constant pressure molecular dynamics for molecular systems. Mol Phys 50:1055–1076

    Article  CAS  Google Scholar 

  • Parrinello M, Rahman A (1981): Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 14:7182–7190

    Article  Google Scholar 

  • Pascher I, Lundmark M, Nyholm, P-G, Sundeil S (1992): Crystal structures of membrane lipids. Biochem et Biophys Acta 1113:329–373

    Google Scholar 

  • Pastor RW (1994a): Techniques and applications of Langevin dynamics simulations. In The Molecular Dynamics of Liquid Crystals Luckhurst GR and Veracini CA, eds. Dordrecht: Kluwer Academic Publishers

    Google Scholar 

  • Pastor RW (1994b): Molecular dynamics and Monte Carlo simulations of lipid bilayers. Curr Opin Struct Biol 4:486–492

    Article  CAS  Google Scholar 

  • Pastor RW, Venable RM (1993): Molecular and stochastic dynamics simulation of lipid membranes. In: Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications, van Gunsteren WF, Weiner PK, Wilkinson AK, eds. Leiden: ESCOM Science Publishers

    Google Scholar 

  • Pastor RW, Venable RM, Karplus M (1988a): Brownian dynamics simulation of a lipid chain in a membrane bilayer. J Chem Phys 89:1112–1227

    Article  CAS  Google Scholar 

  • Pastor RW, Venable RM, Karplus M, Szabo A (1988b): A simulation based model of NMR T 1 Relaxation in lipid bilayer vesicles. J Chem Phys 89:1128–1140

    Article  CAS  Google Scholar 

  • Petersen NO, Chan SI (1977): More on the motional state of lipid bilayer membranes: interpretation of order parameters obtained from nuclear magnetic resonance experiments. Biochemistry 16:2657–2667

    Article  PubMed  CAS  Google Scholar 

  • Rahman A (1964): Correlations in the motion of atoms in liquid argon. Phys Rev 136A:405–411

    Article  Google Scholar 

  • Rand RP, Parsegian VA (1989): Hydration forces between phospholipid bilayers. Biochem Biophys Acta 998:351–376

    Google Scholar 

  • Rommel E, Noack F, Meier P, Kothe G (1988): Proton spin relaxation dispersion studies of phospholipid membranes. J Phys Chem 92:2981–2987

    Article  CAS  Google Scholar 

  • Schulten K, Schulten Z, Szabo A (1981): Dynamics of reactions involving diffusive barrier crossing. J Chem Phys 74:4426–4432

    Article  CAS  Google Scholar 

  • Seelig J, Mcdonald PM (1987): Phospholipids and proteins in biological membranes. 2H NMR as a method to study structure, dynamics and interactions. Ace Chem Res 20:221–228

    Article  CAS  Google Scholar 

  • Seelig J, Seelig A (1980): Lipid conformation in model membranes and biological membranes. Quart Rev of Biophys 13:19–61

    Article  CAS  Google Scholar 

  • Skolnick J, Helfand E (1980): Kinetics of conformational transitions in chain molecules. J Chem Phys 72:5489–5500

    Article  CAS  Google Scholar 

  • Small DM (1986): The Physical Chemistry of Lipids. New York: Plenum

    Google Scholar 

  • Smith GS, Sirota EB, Safinya CR, Piano RJ, Clark NA (1990): X-ray structural studies of freely suspended ordered hydrated DMPC miltimembrane films. J Chem Phys 92:4519–4529

    Article  CAS  Google Scholar 

  • Snyder RG (1992): Chain conformation for the direct calculation of the Raman spectra of the liquid alkanes C12–C20. Faraday Trans 13:1823–1833

    Article  Google Scholar 

  • Stouch TR (1993): Lipid membrane structure and dynamics studied by all-atom molecular dynamics simulations of hydrated phospholipid bilayers. Mol Sim 10:335–362

    Article  CAS  Google Scholar 

  • Sundaralingam M (1972): Molecular structures and conformations of the phospholipids and sphingomyelins. Ann N Acad Sei 195:324–355

    Article  CAS  Google Scholar 

  • Szabo A (1984): Theory of fluorescence depolarization in macromolecules and membranes. J Chem Phys 81:150–167

    Article  CAS  Google Scholar 

  • Tanford C (1961) Physical Chemistry of Macromolecules. New York: John Wiley and Sons

    Google Scholar 

  • Tristram-Nagle S, Zhang R, Suter RM, Worthington CR, Sun WJ, Nagle JF (1993): Measurement of chain tilt angle in fully hydrated bilayers of gel phase lecithns. Biophys 7 64:1097–1109

    Article  Google Scholar 

  • van Gunsteren WF, Weiner PK, Wilkinson AK, eds (1993): Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications. Leiden: ESCOM Science Publishers

    Google Scholar 

  • Vaz WLC, Almeida PF (1991): Miscoscopic versus macroscopic diffusion in one-component fluid phase bilayer membranes. Biophys J 60:1553–1554

    Article  PubMed  CAS  Google Scholar 

  • Venable RM, Zhang Y, Hardy BJ, Pastor RW (1993): Molecular dynamics simulations of a lipid bilayer and of hexadecane: an investigation of membrane fluidity. Science 262:223–226

    Article  PubMed  CAS  Google Scholar 

  • Wang CC, Pecora R (1980): Time correlation functions for restricted rotational diffusion. J Chem Phys 72:5333–5340

    Article  CAS  Google Scholar 

  • Wax N (1954): Noise and Stochastic Processes. New York: Dover

    Google Scholar 

  • Williams DE, Stouch TR (1993): Characterization of force fields for lipid molecules: applications to crystal structures. J Comp Chem 14:1066–1076

    Article  CAS  Google Scholar 

  • Woolf TB, Roux B (1994): Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. Proc Natl Acad Sci (USA) 91:11631–11635

    Article  CAS  Google Scholar 

  • Yellin N, Levin I (1977): Hydrocarbon chain trans-gauche isomerization in phospholipid bilayer gel assemblies. Biochemistry 16:642–647

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Pastor RW (1994): A comparison of methods for computing transition rates from molecular dynamics simulation. Mol. Sim. 13:25–38

    Article  Google Scholar 

  • Zhang Y, Feller SE, Brooks BR, Pastor RW (1995): Computer simulations of liquid/liquid interfaces. I. Theory and application to octane/water. J Chem Phys 103:10252–10266

    Article  CAS  Google Scholar 

  • Zwanzig R, Ailawadi NK (1969): Statistical error due to finite time averaging in computer experiments. Phys Rev 182:280–283

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Pastor, R.W., Feller, S.E. (1996). Time Scales of Lipid Dynamics and Molecular Dynamics. In: Merz, K.M., Roux, B. (eds) Biological Membranes. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-8580-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8580-6_1

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-8582-0

  • Online ISBN: 978-1-4684-8580-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics