Skip to main content

Part of the book series: Modern Theoretical Chemistry ((MTC,volume 4))

Abstract

Weak interactions in the complete many-body Hamiltonian are an important part of modern chemical theory and experiment.(1) As we have seen in this volume, these terms are usually neglected in the construction of electronic wave functions because they account for relatively small amounts of energy, typically on the order of cm-1. Nevertheless, they can be measured to very high accuracy, such as in EPR experiments that probe the coupling of the electron spins with themselves and with the angular momenta of their orbital motion.(2,3) These particular interactions, which are the subject of this chapter, are so small that they act as perturbations to split the nonrelativistic electronic states into a “fine structure” of levels. Since the spacings between these spin multiplets are often very sensitive to the details of the charge distribution, they provide a test of the zero-order wave functions that are used to calculate them.* We are, therefore, dealing with weak forces that have conspicious, measurable, and calculable effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Karplus, Weak interactions in molecular quantum mechanics, Rev. Mod. Phys. 32, 455–460(1960).

    CAS  Google Scholar 

  2. A. B. Zahlan (ed.), The Triplet State, Proceedings of an International Symposium held at the American University of Beirut, Lebanon, Cambridge Univ. Press, Cambridge (1967).

    Google Scholar 

  3. A. Carrington, D. H. Levy, and T. A. Miller, in: Advances in Chemical Physics (I. Prigogine and S. A. Rice, eds.), Vol. 18, pp. 149–248, Wiley-Interscience, New York (1970).

    Google Scholar 

  4. C. A. Hutchison and B. W. Mangum, Paramagnetic resonance absorption in naphthalene in its phosphorescent state, J. Chem. Phys. 29, 952–953 (1958);

    CAS  Google Scholar 

  5. C. A. Hutchison and B. W. Mangum, Paramagnetic resonance absorption in naphthalene in its phosphorescent state, J. Chem. Phys. 34, 908–922 (1961).

    CAS  Google Scholar 

  6. M. Gouterman and W. Moffitt, Origin of zero-field splittings in triplet states of aromatic hydrocarbons, J. Chem. Phys. 30, 1107–1108 (1959).

    CAS  Google Scholar 

  7. G. N. Lewis and M. Kasha, Phosphorescence and the triplet state, J. Am. Chem. Soc. 66, 2100–2116 (1944);

    CAS  Google Scholar 

  8. G. N. Lewis and M. Kasha, Phosphorescence in fluid media and the reverse process of singlet-triplet absorption, J. Am. Chem. Soc. 67, 994–1003 (1945).

    CAS  Google Scholar 

  9. L. C. Allen and A. M. Karo, Basis functions for ab initio calculations, Rev. Mod. Phys. 32, 275–285 (1960).

    Google Scholar 

  10. H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two- Electron Atoms, Springer-Verlag, Berlin (1957).

    Google Scholar 

  11. T. E. H. Walker and W. G. Richards, Ab initio computation of spin-orbit coupling constants in diatomic molecules, Symp. Faraday Soc. 2, 64–68 (1968).

    Google Scholar 

  12. H. Ito and Y. J. I’haya, Evaluation of molecular spin-orbit integrals by a Gaussian expansion method, Mol. Phys. 24, 1103–1115 (1972).

    CAS  Google Scholar 

  13. R. H. Pritchard, M. L. Sink, and C. W. Kern, Theoretical study of the fine-structure coupling constants in the 2p 3 u state of H2, Mol. Phys. 30, 1273–1282 (1975).

    CAS  Google Scholar 

  14. S. Fraga and K. M. S. Saxena, Electronic Structure of Atoms, Division of Theoretical Chemistry, University of Alberta, Technical Report TC-AS-I-72, 1972;

    Google Scholar 

  15. S. Fraga and J. Karwowski, Electronic Structure of Atoms, Division of Theoretical Chemistry, University of Alberta, Technical Report TC-AS-II-73, 1973.

    Google Scholar 

  16. G. Malli, Spin-other-orbit interaction in many-electron atoms, J. Chem. Phys. 48, 1088–1091 (1968).

    CAS  Google Scholar 

  17. G. Malli, Spin-spin interaction in many-electron atoms, J. Chem. Phys. 48, 1092–1094 (1968).

    CAS  Google Scholar 

  18. K. M. S. Saxena and G. Malli, Spin-orbit and spin-other-orbit interactions for f 4 electron configuration, Can. J. Phys. 47, 1829–1862 (1969).

    CAS  Google Scholar 

  19. S. Fraga, K. M. S. Saxena, and B. W. N. Lo, Hartree-Fock values of energies, interaction constants, and atomic properties for the ground states of the negative ions, neutral atoms, and first four positive ions from helium to krypton, At. Data 3, 323–361 (1971);

    Google Scholar 

  20. S. Fraga, K. M. S. Saxena, and B. W. N. Lo, Hartree-Fock values of energies, interaction constants, and atomic properties for excited states with p N configurations of the negative ions, neutral atoms, and first positive ions from boron to bromine, At. Data 4, 255–267 (1972);

    CAS  Google Scholar 

  21. 16b. S. Fraga and K. M. S. Saxena, Hartree-Fock values of energies, interaction constants, and atomic properties for excited states with 3dN4s 0 and 3d N4s 2 configurations of the negative ions, neutral atoms, and first four positive ions of the transition elements, At. Data 4, 269–287 (1972).

    Google Scholar 

  22. S. Fraga and G. Malli, Many-Electron Systems: Properties and Interactions, W. B. Saunders Company, Philadelphia (1968).

    Google Scholar 

  23. P. A. M. Dirac, Quantum theory of the electron, Proc. R. Soc. London, Ser. A 117, 610–624 (1928).

    Google Scholar 

  24. H. A. Kramers, Structure of the multiplet 5-states in molecules with two atoms. Parts I and II, Z. Phys. 53, 422–438(1929).

    CAS  Google Scholar 

  25. J. H. van Vleck, The coupling of angular momentum vectors in molecules, Rev. Mod. Phys. 23, 213–227 (1951).

    Google Scholar 

  26. G. Breit, Effect of retardation on the interaction of two electrons, Phys. Rev. 34, 553–573 (1929).

    CAS  Google Scholar 

  27. W. Pauli, Quantum mechanics of the magnetic electron, Z. Phys. 43, 601–623 (1927).

    CAS  Google Scholar 

  28. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, pp. 1044–1046, John Wiley and Sons, New York (1954).

    Google Scholar 

  29. M. Tinkham and M. W. P. Strandberg, Theory of the fine structure of the molecular oxygen ground state, Phys. Rev. 97, 937–951 (1955).

    CAS  Google Scholar 

  30. A. Carrington and A. D. McLachlan, Introduction to Magnetic Resonance, Harper and Row, New York (1967);

    Google Scholar 

  31. A. D. McLachlan, Spin-spin coupling Hamiltonian in spin multiplets, Mol. Phys. 6, 441–444 (1963).

    CAS  Google Scholar 

  32. R. D. Sharma, Spin-spin interaction in methylene, J. Chem. Phys. 38, 2350–2352 (1963);

    CAS  Google Scholar 

  33. R. D. Sharma, Spin-spin interaction in methylene, erratum J. Chem. Phys. 41, 3259 (1964).

    Google Scholar 

  34. A. L. Kwiram, in M.T.P. International Review of Science (C. A. McDowell, ed.), Vol. 4, pp. 271–315, Butterworths, London (1972).

    Google Scholar 

  35. D. De Santis, A. Lurio, T. A. Miller, and R. S. Freund, Radio-frequency spectrum of metastable N2(A 3+ u ). II. Fine structure, magnetic hyperfine structure, and electric quad-rupole constants in the lowest 13 vibrational levels, J. Chem. Phys. 58, 4625–4665 (1973); see also references contained therein.

    Google Scholar 

  36. M. A. El-Sayed,M.T.P. International Review of Science (A. D. Buckingham and D. A. Ramsay, eds.), Vol. 3, pp. 119–153, Butterworths, London (1972).

    Google Scholar 

  37. R. S. Freund and T. A. Miller, Microwave optical magnetic resonance induced by electrons (MOMRIE) in H2 G(3d 1+ g), J. Chem. Phys. 56, 2211–2219 (1972).

    CAS  Google Scholar 

  38. H. F. Hameka, Advanced Quantum Chemistry, Addison-Wesley, Reading, Massachusetts (1965).

    Google Scholar 

  39. O. Zamani-Khamiri and H. F. Hameka, Spinorbit contribution to the zero-field splitting of the oxygen molecule, J. Chem. Phys. 55, 2191–2196 (1971);

    CAS  Google Scholar 

  40. R. H. Pritchard, C. W. Kern, O. Zamani-Khamiri, and H. F. Hameka, Comment on the spin-orbit contribution to the zero-field splitting of the oxygen molecule, J. Chem. Phys. 56, 5744–5745 (1972).

    CAS  Google Scholar 

  41. A. Messiah, Quantum Mechanics, Appendix C, North-Holland, Amsterdam (1962).

    Google Scholar 

  42. D. R. Beck, C. A. Nicolaides, and J. I. Musher, Calculation on the fine structure of the a 3+ u state of molecular helium, Phys. Rev. A 10, 1522–1527 (1974).

    CAS  Google Scholar 

  43. J. B. Lounsbury, Calculation of zero-field splitting in NH. II. One-center representation of triplet states, J. Chem. Phys. 46, 2193–2200 (1967);

    CAS  Google Scholar 

  44. J. B. Lounsbury, I. One-center minimal basis and atomic orbital representations of the ground state, J. Chem. Phys. 42, 1549–1554 (1965).

    CAS  Google Scholar 

  45. S. R. Langhoff, Spin-orbit contribution to the zero-field splitting in CH2, J. Chem. Phys. 61, 3881–3885(1974).

    CAS  Google Scholar 

  46. S. A. Boorstein and M. Gouterman, Zero-field splittings. IV. Gaussian approximation of integrals, J. Chem. Phys. 41, 2776–2781 (1964).

    CAS  Google Scholar 

  47. S. R. Langhoff, E. R. Davidson, M. Gouterman, W. R. Leenstra, and A. L. Kwiram, Zero-field splitting of the triplet state of porphyrins. II, J. Chem. Phys. 62, 169–176 (1975).

    CAS  Google Scholar 

  48. P. S. Han, T. P. Das, and M. F. Rettig, Calculation of the spin-spin and spin-orbit contribution to the zero-field splitting in hemin, J. Chem. Phys. 56, 3861–3873 (1972).

    CAS  Google Scholar 

  49. K. Kayama and J. C. Baird, Spin-orbit effects and the fine structure in the 3- g ground state of O 2, J. Chem. Phys. 46, 2604–2618 (1967).

    CAS  Google Scholar 

  50. J. S. Griffith, The Theory of Transition-Metal Ions, Cambridge Univ. Press, Cambridge (1961).

    Google Scholar 

  51. H. Hayashi and S. Nagakura, Correlation of the zero-field splittings with the nπ* and ππ* triplet levels of benzaldehydes, Chem. Phys. Lett. 18, 63–66 (1973);

    CAS  Google Scholar 

  52. H. Hayashi and S. Nagakura, The lowest nπ* and ππ* triplet levels of benzaldehydes and their correlation with the zero-field splittings, Mol. Phys. 27, 969–979 (1974).

    CAS  Google Scholar 

  53. D. S. McClure, Spin-orbit interaction in aromatic molecules, J. Chem. Phys. 20, 682–686 (1952).

    CAS  Google Scholar 

  54. S. A. Boorstein and M. Gouterman, Theory for zero-field splittings in aromatic hydrocarbons, J. Chem. Phys. 39, 2443–2452 (1963).

    CAS  Google Scholar 

  55. M. S. de Groot, I. A. M. Hesselmann, and J. H. van der Waals, Paramagnetic resonance in phosphorescent aromatic hydrocarbons, Mol. Phys. 16, 45–60 (1969).

    Google Scholar 

  56. R. F. Curl, The relationship between electron spin-rotation coupling constants and gtensor components, Mol. Phys. 9, 585–597 (1965).

    CAS  Google Scholar 

  57. A. N. Jette, Fine-structure of the metastable, c 3 u (1s, 2p), state of molecular hydrogen, Chem. Phys. Lett. 25, 590–592 (1974);

    CAS  Google Scholar 

  58. A. N. Jette and T. A. Miller, Fine structure in Rydberg states of the H2 molecule, Chem. Phys. Lett. 29, 547–550 (1974).

    CAS  Google Scholar 

  59. W. Lichten, M. V. McCusker, and T. L. Vierima, Fine structure of the metastable a 3+ u state of the helium molecule, J. Chem. Phys. 61, 2200–2212 (1974).

    CAS  Google Scholar 

  60. R. N. Dixon, Spin-rotation interaction constants for bent AH2 molecules in doublet electronic states, Mol. Phys. 10, 1–6 (1966).

    Google Scholar 

  61. S. K. Luke, The radio-frequency spectrum of H+ 2, Astrophys. J. 156, 761–769 (1969).

    CAS  Google Scholar 

  62. See also P. M. Kalaghan and A. Dalgarno, Hyperfine structure of the molecular ion H+ 2, Phys. Lett. 38A, 485–486 (1972).

    Google Scholar 

  63. F. E. Harris, Matrix elements of spin-interaction operators, J. Chem. Phys. 47, 1047–1061 (1967).

    CAS  Google Scholar 

  64. I. L. Cooper and J. I. Musher, Evaluation of matrix elements of spin-dependent operators for N-electron systems. I. One-body operators, J. Chem. Phys. 57, 1333–1342 (1972);

    CAS  Google Scholar 

  65. I. L. Cooper and J. I. Musher, II. Two-body operators, J. Chem. Phys. 59, 929–938 (1973).

    CAS  Google Scholar 

  66. C. Böttcher and J. C. Browne, Matrix elements of spin-dependent operators over total molecular wavefunctions, J. Chem. Phys. 52, 3197–3201 (1970);

    Google Scholar 

  67. C. Bottcher, Calculations on the Small Terms in the Hamiltonian of a Diatomic Molecule (Part I) and Variational Principles for the Study of Resonances (Part II), Ph.D. thesis, The Queen’s University of Belfast, 1968.

    Google Scholar 

  68. Y-N. Chiu, On singlet-triplet transitions induced by exchange with paramagnetic molecules and the intermolecular coupling of spin angular momenta, J. Chem. Phys. 56, 4882–4898 (1972).

    CAS  Google Scholar 

  69. L. C. Chiu, Electron magnetic perturbation in diatomic molecules of Hund’s case (b), J. Chem. Phys. 40, 2276–2285 (1964).

    CAS  Google Scholar 

  70. R. McWeeny, On the origin of spin-Hamiltonian parameters, J. Chem. Phys. 42, 1717–1725 (1965).

    CAS  Google Scholar 

  71. K. F. Freed, Theory of the hyperfine structure of molecules: Application to 3∏ states of diatomic molecules intermediate between Hund’s cases (a) and (b), J. Chem. Phys. 45, 4214–4241 (1966).

    CAS  Google Scholar 

  72. S. R. Langhoff, Spin Dipole-Dipole Contribution to the Zero-Field Splitting in Methylene and Formaldehyde, Ph.D. thesis, University of Washington (1973).

    Google Scholar 

  73. H. M. McConnell, A theorem on zero-field splittings, Proc. Natl. Acad. Sci. USA 45, 172–174 (1959).

    CAS  Google Scholar 

  74. A. C. Wahl, P. E. Cade, and C. C. J. Roothaan, Study of two-center integrals useful in calculations on molecular structure. V. General methods for diatomic integrals applicable to digital computers, J. Chem. Phys. 41, 2578–2599 (1964).

    CAS  Google Scholar 

  75. R. H. Pritchard, A Theoretical Study of Fine Structure Interactions in Diatomic Molecules, Ph.D. thesis, The Ohio State University, 1974.

    Google Scholar 

  76. R. H. Pritchard, M. L. Sink, J. D. Allen, and C. W. Kern, Theoretical studies of fine structure in the ground state of O2, Chem. Phys. Lett. 17, 157–159 (1972).

    CAS  Google Scholar 

  77. R. L. Matcha, C. W. Kern, and D. M. Schrader, Fine-structure studies of diatomic molecules: Two-electron spin-spin and spin-orbit integrals, J. Chem. Phys. 51, 2152–2170 (1969);

    CAS  Google Scholar 

  78. R. L. Matcha, C. W. Kern, and D. M. Schrader, Fine-structure studies of diatomic molecules: Two-electron spin-spin and spin-orbit integrals, erratum, J. Chem. Phys. 57, 2598 (1972).

    Google Scholar 

  79. R. M. Pitzer and H. F. Hameka, Evaluation of the spin-spin interaction in benzene, J. Chem. Phys. 37, 2725 (1962);

    Google Scholar 

  80. H. F. Hameka, Theory of the electron spin resonance of benzene in the triplet state, J. Chem. Phys. 31, 315–321 (1959).

    CAS  Google Scholar 

  81. M. Blume and R. E. Watson, Theory of spin-orbit coupling in atoms. I. Derivation of the spin-orbit coupling constant, Proc. R. Soc. London, Ser. A 270, 127–143 (1962);

    CAS  Google Scholar 

  82. M. Blume and R. E. Watson, Theory of spin-orbit coupling in atoms. II. Comparison of theory with experiment, Proc. R. Soc. London, Ser. A 271, 565–578 (1963).

    CAS  Google Scholar 

  83. Z. Kopal, Numerical Analysis, John Wiley and Sons, New York (1961).

    Google Scholar 

  84. R. E. Christoffersen and K. Ruedenberg, Hybrid integrals over Slater-type atomic orbitals, J. Chem. Phys. 49, 4285–4292 (1968).

    CAS  Google Scholar 

  85. R. L. Matcha, G. Malli, and M. B. Milleur, Two-center two-electron spin-spin and spinorbit hybrid integrals, J. Chem. Phys. 56, 5982–5989 (1972);

    CAS  Google Scholar 

  86. G. Malli, M. B. Milleur, and R. L. Matcha, Two-center hybrid integrals, J. Chem. Phys. 54, 4964–4965 (1971).

    CAS  Google Scholar 

  87. R. L. Matcha, R. H. Pritchard, and C. W. Kern, Prolate-spheroidal expansions of the spinorbit, spin-spin, and orbit-orbit operators, J. Math. Phys. 12, 1155–1159 (1971) and references therein.

    CAS  Google Scholar 

  88. D. M. Schrader, Calculation of spin-spin interaction integrals, J. Chem. Phys. 41, 3266–3267 (1964).

    CAS  Google Scholar 

  89. G.G. Hall and A. Hardisson, The anistropy of the g-factor for polycyclic hydrocarbons, Proc. R. Soc. London, Ser. A 278, 129–136 (1964).

    Google Scholar 

  90. K. Rüdenberg, A study of two-center integrals useful in calculations on molecular structure. II. The two-center exchange integrals, J. Chem. Phys. 19, 1459–1477 (1951).

    Google Scholar 

  91. R. L. Matcha, D. J. Kouri, and C. W. Kern, Relativistic effects in diatomic molecules: Evaluation of one-electron integrals, J. Chem. Phys. 53, 1052–1059 (1970).

    CAS  Google Scholar 

  92. R. L. Matcha and C. W. Kern, Evaluation of three- and four-center integrals for operators appearing in the Breit-Pauli Hamiltonian, J. Chem. Phys. 55, 469 (1971).

    CAS  Google Scholar 

  93. A. D. McLean, LCAO-MO-SCF ground state calculations on C2H2 and CO2, J. Chem. Phys. 32, 1595–1597 (1960).

    CAS  Google Scholar 

  94. E. A. Magnusson and C. Zauli, Evaluation of molecular integrals by a numerical method, Proc. Phys. Soc., London 78, 53–64 (1961).

    CAS  Google Scholar 

  95. A. C. Wahl and R. H. Land, The evaluation of multicenter integrals by polished brute force techniques I. Analysis, numerical methods, and computational design of the potential-charge distribution scheme, Int. J. Quantum Chem. IS, 375–401 (1967).

    Google Scholar 

  96. I. Shavitt and M. Karplus, Gaussian-transform method for molecular integrals. I. Formulation for energy integrals, J. Chem. Phys. 43, 398–414 (1965).

    CAS  Google Scholar 

  97. C. W. Kern and M. Karplus, Gaussian-transform method for molecular integrals. II. Evaluation of molecular properties, J. Chem. Phys. 43, 415–429 (1965).

    CAS  Google Scholar 

  98. S. F. Boys, Electronic wavefunctions. I. A general method of calculation for the stationary states of any molecular system, Proc. R. Soc. London, Ser. A 200, 542–554 (1950).

    CAS  Google Scholar 

  99. I. Shavitt, in:Methods in Computational Physics (B. Alder, S. Fernbach, and M. Rotenberg, eds.) vol. 2, pp. 1–45, Academic Press, New York (1963).

    Google Scholar 

  100. R. L. Matcha and C. W. Kern, Relationships between spin-spin and electron repulsion integrals, J. Phys. B 4, 1102–1108 (1971).

    CAS  Google Scholar 

  101. M. Geller and R. W. Griffith, Zero-field splitting, one- and two-center Coulomb-type integrals, J. Chem. Phys. 40, 2309–2325 (1964);

    CAS  Google Scholar 

  102. M. Geller and R. W. Griffith, Zero-field splitting, one- and two-center Coulomb-type integrals, erratum, J. Chem. Phys. 40, 2309–2310 (1964).

    CAS  Google Scholar 

  103. F. E. Harris and H. H. Michels, in: Advances in Chemical Physics (I. Prigogine, ed.), Vol. 13, pp. 205–266, Interscience, New York (1967).

    Google Scholar 

  104. J. B. Lounsbury and G. W. Barry, General solution for one-center zero-field splitting integrals, J. Chem. Phys. 44, 4367–4372 (1966).

    CAS  Google Scholar 

  105. J. W. McIver, Jr. and H. F. Hameka, Effect of spin-orbit interactions on the zero-field splitting of the NH radical, J. Chem. Phys. 45, 767–773 (1966).

    CAS  Google Scholar 

  106. F. P. Prosser and C. H. Blanchard, On the evaluation of two-center integrals, J. Chem. Phys. 36, 1112(1962).

    Google Scholar 

  107. R. L. Matcha and C. W. Kern, Identities relating spin-spin and orbit-orbit to spin-orbit interactions, Phys. Rev. Lett. 25, 981–982 (1970).

    Google Scholar 

  108. R. M. Pitzer, C. W. Kern, and W. N. Lipscomb, Evaluation of molecular integrals by solid spherical harmonic expansions, J. Chem. Phys. 37, 267–274 (1962).

    CAS  Google Scholar 

  109. R. H. Pritchard and C. W. Kern, Spin-spin and spin-other-orbit integrals for diatomic molecules, J. Chem. Phys. 57, 2590–2591 (1972);

    CAS  Google Scholar 

  110. R. H. Pritchard and C. W. Kern, Spin-spin and spin-other-orbit integrals for diatomic molecules, erratum, J. Chem. Phys. 61, 754 (1974).

    Google Scholar 

  111. S. R. Langhoff, Ab initio evaluation of the fine structure of the oxygen molecule, J. Chem. Phys. 61, 1708–1716(1974).

    CAS  Google Scholar 

  112. P. W. Abegg and T-K. Ha, Ab initio calculation of the spin-orbit coupling constant from gaussian lobe SCF molecular wavefunctions, Mol. Phys. 27, 763–767 (1974).

    CAS  Google Scholar 

  113. R. K. Hinkley, T. E. H. Walker, and W. G. Richards, Spin-orbit coupling constants from Gaussian wavefunctions, J. Chem. Phys. 52, 5975–5976 (1970).

    CAS  Google Scholar 

  114. G. Herzberg, Spectra of Diatomic Molecules, 2nd ed., D. Van Nostrand, Princeton (1950).

    Google Scholar 

  115. K. P. Huber, Constants of diatomic molecules, in: American Institute of Physics Handbook, McGraw-Hill, New York (1972).

    Google Scholar 

  116. S. P. McGlynn, T. Azumi, and M. Kinoshita, Molecular Spectroscopy of the Triplet State, Prentice-Hall, Englewood Cliffs, New Jersey (1969).

    Google Scholar 

  117. P. R. Fontana, Spin-orbit and spin-spin interactions in diatomic molecules. I. Fine structure of H2, Phys. Rev. 125, 220–228 (1962).

    CAS  Google Scholar 

  118. L. C. Chiu, Fine structure constants of metastable H2 in the c 3 u state, Phys. Rev. 137, A384-A387 (1965);

    Google Scholar 

  119. L. C. Chiu, Fine-structure constants of the metastable c 3 u -state hydrogen molecule, J. Chem. Phys. 41, 2197–2198 (1964).

    Google Scholar 

  120. W. T. Zemke and P. G. Lykos, Double configuration self-consistent field study of the 1 u , 3 u and 1 g states of H2, J. Chem. Phys. 51, 5635–5650 (1969).

    CAS  Google Scholar 

  121. M. Lombardi, Fine and hyperfine structure of the 2p and 3p 3 u states of H2, J. Chem. Phys. 58, 797–802 (1973).

    CAS  Google Scholar 

  122. S. Rothenberg and E. R. Davidson, Natural orbitals for hydrogen-molecule excited states, J. Chem. Phys. 45, 2560–2576 (1966).

    CAS  Google Scholar 

  123. H. H. Nielsen, The vibration-rotation energies of molecules, Rev. Mod. Phys. 23, 90–136 (1951).

    CAS  Google Scholar 

  124. C. W. Kern and R. L. Matcha, Nuclear corrections to electronic expectation values: Zero-point vibrational effects in the water molecule, J. Chem. Phys. 49, 2081–2091 (1968).

    CAS  Google Scholar 

  125. W. C. Ermler and C. W. Kern, Zero-point vibrational corrections to one-electron properties of the water molecule in the near Hartree-Fock limit, J. Chem. Phys. 55, 4851–4860 (1971).

    CAS  Google Scholar 

  126. B.J. Krohn, W. C. Ermler, and C. W. Kern, Nuclear corrections to molecular properties. IV. Theory for low-lying vibrational states of polyatomic molecules with application to the water molecule near the Hartree-Fock limit, J. Chem. Phys. 60, 22–33 (1974).

    CAS  Google Scholar 

  127. L. L. Sprandel and C. W. Kern, A test of perturbation theory for determining anharmonic vibrational corrections to properties of diatomic molecules, Mol. Phys. 24, 1383–1389 (1972).

    CAS  Google Scholar 

  128. G. D. Carney and R. N. Porter, Abstracts of the 1972 Molecular Structure and Spectroscopy Symposium held at The Ohio State University;

    Google Scholar 

  129. G. D. Carney, Ab-initio Calculation of Vibration-Rotation Properties for the Ground Electronic State of the H+ 3 Molecular Ion, Ph.D. thesis, University of Arkansas, 1973.

    Google Scholar 

  130. L. L. Sprandel, Quantum Mechanical Studies of Molecular Vibrations, Part II—A Study of the Use of the Self-Consistent Field and Configuration Interaction Methods for Solving the Vibrational Schrodinger Equation of a Bent AB2 Molecule With Application to Water, Ph.D. thesis, The Ohio State University 1974.

    Google Scholar 

  131. M. G. Bucknell, N. C. Handy, and S. F. Boys, Vibration-rotation wave-functions and energies for any molecule obtained by a variational method, Mol. Phys. 28, 759–776 (1974).

    CAS  Google Scholar 

  132. M. G. Bucknell and N. C. Handy, Vibration-rotation wavefunctions and energies for the ground electronic state of the water molecule by a vibrational method, Mol. Phys. 28, 777–792 (1974).

    CAS  Google Scholar 

  133. S. A. Gribov and G. V. Khovrin, Determination of the potential surface and analysis of the anharmonic vibrations of the water molecule, Opt. Spectrosc. 36, 274–279 (1974).

    Google Scholar 

  134. E. K. Lai, M. S. Thesis, Department of Chemistry, Indiana University, 1975.

    Google Scholar 

  135. G. D. Carney and C. W. Kern, Vibration-rotation analysis of some nonlinear molecules by a variational method, Int. J. Quantum Chem. Symp. 9, 317–323 (1975).

    CAS  Google Scholar 

  136. J. K. G. Watson, Simplification of the molecular vibration-rotation Hamiltonian, Mol. Phys. 15, 479–490 (1968).

    CAS  Google Scholar 

  137. H. Lefebvre-Brion and C. M. Moser, Calculation of valence states of NO and NO+, J. Chem. Phys. 44. 2951–2954 (1966).

    CAS  Google Scholar 

  138. T. E. H. Walker and W. G. Richards, The nature of the first excited electronic state in BeF, Proc. Phys. Soc., London 92, 285–290 (1967).

    CAS  Google Scholar 

  139. T. E. H. Walker and W. G. Richards, The nature of the first excited electronic state in MgF, Proc. Phys. Soc., London 1 (Ser. 2), 1061–1065 (1968).

    Google Scholar 

  140. A. L. Roche and H. Lefebvre-Brion, Valence-shell states of PO: An example of the variation of the spin-orbit coupling constants with internuclear distance, J. Chem. Phys. 59, 1914–1921 (1973).

    CAS  Google Scholar 

  141. W. H. Moores and R. McWeeny, The calculation of spin-orbit splitting and g tensors for small molecules and radicals, Proc. R. Soc. London, Ser. A 332, 365–384 (1973).

    CAS  Google Scholar 

  142. E. Ishiguro and M. Kobori, Spin-orbit coupling constants in simple diatomic molecules, J. Phys. Soc. Japan 22, 263–270 (1967).

    CAS  Google Scholar 

  143. C. E. Moore, Atomic Energy Levels, I., II., and III. National Bureau of Science, Circular No. 467, U.S. Government Printing Office, Washington, D.C. (1949).

    Google Scholar 

  144. L. Veseth, Spin-orbit and spin-other-orbit interaction in diatomic molecules, Theor. Chim. Acta, 18, 368–384 (1970).

    CAS  Google Scholar 

  145. T. E. H. Walker and W. G. Richards, Calculation of spin-orbit coupling constants in diatomic molecules from Hartree-Fock wavefunctions, Phys. Rev. 177, 100–101 (1969).

    CAS  Google Scholar 

  146. T. E. H. Walker and W. G. Richards, Molecular spin-orbit coupling constants. The role of core polarization, J. Chem. Phys. 52, 1311–1314 (1970).

    CAS  Google Scholar 

  147. H. Lefebvre-Brion and C. M. Moser, On the calculation of spin-orbit interaction in diatomic molecules, J. Chem. Phys. 46, 819–820 (1967).

    CAS  Google Scholar 

  148. H. Lefebvre-Brion and N. Bessis, Spin-orbit splitting in 2Δ states of diatomic molecules, Can. J. Phys. 47, 2727–2730 (1969).

    CAS  Google Scholar 

  149. J. A. Hall, J. Schamps, J. M. Robbe, and H. Lefebvre-Brion, A theoretical study of the perturbation parameters in the a 3∏ and A 1 states of CO. J. Chem. Phys. 62, 1802–1805 (1975).

    Google Scholar 

  150. E. A. Ballik and D. A. Ramsay, The A3- g -X3 u band system of the C2 molecule, Astrophys. J. 137, 61–83 (1963);

    CAS  Google Scholar 

  151. E. A. Ballik and D. A. Ramsay, An extension of the Phillips system of C2 and a survey of C2 states, Astrophys. J. 137, 84–101 (1963);

    CAS  Google Scholar 

  152. G. Herzberg, A. Lagerqvist, and C. Malmberg, New electronic transitions of the C2 molecule in absorption in the vacuum ultravoilet region, Can. J. Phys. 47, 2735–2743 (1969).

    CAS  Google Scholar 

  153. S. R. Langhoff, M. L. Sink, R. H. Pritchard, C. W. Kern, S. J. Strickler, and M. J. Boyd, Ab initio study of perturbations between the X 1+ g and b 3- g states of the C2 molecule, J. Chem. Phys. (submitted for publication).

    Google Scholar 

  154. K. Kayama, Spin dipole-dipole interaction in O2, J. Chem. Phys. 42, 622–630 (1965).

    CAS  Google Scholar 

  155. R. H. Pritchard, C. F. Bender, and C. W. Kern, Fine-structure interactions in the ground state of O2, Chem. Phys. Lett. 5, 529–532 (1970).

    CAS  Google Scholar 

  156. T. J. Cook, B. R. Zegarski, W. H. Breckenridge, and T. A. Miller, Gas phase EPR of vibrationally excited O2, J. Chem. Phys. 58, 1548–1552 (1972) and references therein.

    Google Scholar 

  157. T. Amano and E. Hirota, Microwave spectrum of the molecular oxygen in the excited vibrational state, J. Mol. Spectrosc. 53, 346–363 (1974).

    CAS  Google Scholar 

  158. E. Wasserman, R. S. Hutton, V. J. Kuck, and W. A. Yager, Zero-field parameters of “free” CH2: Spin-orbit contributions in xenon, J. Chem. Phys. 55, 2593–2594 (1971);

    CAS  Google Scholar 

  159. E. Wasserman, R. S. Hutton, V. J. Kuck, and W. A. Yager, Electron paramagnetic resonance of CD2 and CHD isotope effects, motion and geometry of methylene, J. Am. Chem. Soc. 92, 7491–7493 (1970);

    CAS  Google Scholar 

  160. E. Wasserman, V J. Kuck, R. S. Hutton, E. D. Anderson, and W. A. Yager, 13C hyperfine interactions and geometry of methylene, J. Chem. Phys. 54, 4120–4121 (1971).

    CAS  Google Scholar 

  161. R. A. Bernheim, H. W. Bernard, P. S. Wang, L. S. Wood, and P. S. Skell, Electron paramagnetic resonance of triplet CH2, J. Chem. Phys. 53, 1280–1281 (1970);

    CAS  Google Scholar 

  162. R. A. Bernheim, H. W. Bernard, P. S. Wang, L. S. Wood, and P. S. Skell, 13C hyperfine interaction in CD2, J. Chem. Phys. 53, 1280–1281 (1970).

    CAS  Google Scholar 

  163. J. Higuchi, On the effect of the bond angle in the electron spin-spin interaction. Methylene derivatives, J. Chem. Phys. 39, 1339–1341 (1963);

    CAS  Google Scholar 

  164. J. Higuchi, Zero-field splittings in molecular multiplets. Spin-spin interaction of methylene derivatives, J. Chem. Phys. 38, 1237–1245 (1963).

    CAS  Google Scholar 

  165. J. F. Harrison, An ab initio study of the zero field splitting parameters of 3 B 1 methylene, J. Chem. Phys. 54, 5413–5417 (1971).

    CAS  Google Scholar 

  166. S. R. Langhoff and E. R. Davidson, An ab initio calculation of the spin dipole-dipole parameters for methylene, Int. J. Quantum Chem. 7, 759–777 (1973).

    CAS  Google Scholar 

  167. S. R. Langhoff, S. T. Elbert, and E. R. Davidson, A configuration interaction study of the spin dipole-dipole parameters for formaldehyde and methylene, Int. J. Quantum Chem. 7, 999–1019 (1973).

    CAS  Google Scholar 

  168. S. H. Glarum, Spin-orbit interactions in molecular radicals, J. Chem. Phys. 39, 3141–3144 (1963).

    CAS  Google Scholar 

  169. S. J. Fogel and H. F. Hameka, Spin-orbit interactions and their effect on the zero-field splitting of the methylene radical, J. Chem. Phys. 42, 132–136 (1965).

    CAS  Google Scholar 

  170. W. R. Hall and H. F. Hameka, Second-order effect of spin-orbit coupling on the angular dependence of the zero-field splitting in CH2, J. Chem. Phys. 58, 226–231 (1973).

    CAS  Google Scholar 

  171. W. R. Hall and H. F. Hameka, See also erratum, J. Chem. Phys. 60, 4104 (1974).

    CAS  Google Scholar 

  172. S. R. Langhoff and G. D. Carney, to be published.

    Google Scholar 

  173. W. T. Raynes, Rotational analysis of some bands of the triplet←singlet transition in formaldehyde, J. Chem. Phys. 44, 2755–2777 (1966);

    CAS  Google Scholar 

  174. W. T. Raynes, Spin splittings and rotational structure of nonlinear molecules in doublet and triplet electronic states, J. Chem. Phys. 41, 3020–3032 (1964).

    CAS  Google Scholar 

  175. S. R. Langhoff and E. R. Davidson, Ab initio evaluation of the fine structure and radiative lifetime of the 3 A 2(nπ*) state of formaldehyde, J. Chem. Phys. 64, 4699–4710 (1976).

    CAS  Google Scholar 

  176. S. D. Peyerimhoff, R. J. Buenker, W. E. Kammer, and H. Hsu, Calculation of the electronic spectrum of formaldehyde, Chem. Phys. Lett. 8, 129–135 (1971).

    CAS  Google Scholar 

  177. A. M. Ponte Goncalves and C. A. Hutchinson, Jr., Electron nuclear double resonance in photoexcited triplet-state benzene-h 6 molecules in benzene-d 6 single crystals, J. Chem. Phys. 49, 4235–4236 (1968).

    Google Scholar 

  178. Y-N. Chiu, Zero-field splittings in some triplet-state aromatic molecules, J. Chem. Phys. 39, 2736–2748 (1963).

    Google Scholar 

  179. M. Geller, Two-electron, one- and two-center integrals, J. Chem. Phys. 39, 853–854 (1963).

    CAS  Google Scholar 

  180. J. H. van der Waals and G. ter Maten, Zero-field splitting of the lowest triplet state of some aromatic hydrocarbons: Calculation and comparison with experiment, Mol. Phys. 8, 301–318 (1964).

    Google Scholar 

  181. M. Godfrey, C. W. Kern, and M. Karplus, Studies of zero-field splittings in aromatic molecules, J. Chem. Phys. 44, 4459–4469 (1966).

    CAS  Google Scholar 

  182. S. R. Langhoff, E. R. Davidson, and C. W. Kern, Ab initio study of the zero-field splitting parameters of 3 B 1u benzene, J. Chem. Phys. 63, 4800–4807 (1975).

    CAS  Google Scholar 

  183. M. S. de Groot and J. H. van der Waals, Paramagnetic resonance in phosphorescent aromatic hydrocarbons. III. Conformational isomerism in benzene and triptycene, Mol. Phys. 6, 545–562 (1963).

    Google Scholar 

  184. M. Kasha, Characterization of electronic transitions in complex molecules, Discuss. Faraday Soc. 9, 14–19 (1950).

    Google Scholar 

  185. L. Goodman and B. J. Laurenzi, in: Advances in Quantum Chemistry (P-O. Lowdin, ed.), Vol. 4, pp. 153–169, Academic Press, New York (1968).

    Google Scholar 

  186. R. L. Ellis, R. Squire, and H. H. Jaffe, Use of the CNDO method in spectroscopy. V. Spin-orbit coupling, J. Chem. Phys. 55, 3499–3505 (1971).

    CAS  Google Scholar 

  187. G. Herzberg, Electronic Spectra of Polyatomic Molecules, pp. 417–419 Van Nostrand, Princeton, New Jersey (1966), and references therein.

    Google Scholar 

  188. J. W. Sidman, Spin-orbit coupling in the 3 A 2– 1 A 1 transition of formaldehyde, J. Chem. Phys. 29, 644–652 (1958).

    CAS  Google Scholar 

  189. T. Yonezawa, H. Kato, and H. Kato, Oscillator strength of singlet-triplet transition in formaldehyde, J. Mol Spectrosc. 24, 500–503 (1967).

    CAS  Google Scholar 

  190. L. L. Lohr, Spin-forbidden electric-dipole transition moments, J. Chem. Phys. 45, 1362–1363 (1966).

    CAS  Google Scholar 

  191. S. R. Langhoff, S. T. Elbert, C. F. Jackeis, and E. R. Davidson, Chem. Phys. Lett. 29, 247–249 (1974).

    CAS  Google Scholar 

  192. J. E. Mentall, E. P. Gentieu, M. Krauss, and D. Neumann, Photoionization and absorption spectrum of formaldehyde in the vacuum ultraviolet, J. Chem. Phys. 55, 5471–5479 (1971).

    CAS  Google Scholar 

  193. D. L. Yeager and V. McKoy, Equations of motion method: Excitation energies and intensities in formaldehyde, J. Chem. Phys. 60, 2714–2716 (1974).

    CAS  Google Scholar 

  194. G. L. Bendazzoli and P. Palmieri, Spin-orbit interaction in polyatomic molecules: Ab initio computations with gaussian orbitals, Int. J. Quantum Chem. 8, 941–950 (1974).

    CAS  Google Scholar 

  195. H. F. Schaefer III and W. H. Miller, Curve crossing of the B 3- u and 3 u states of O2 and its relation to predissociation in the Schumann-Runge bands, J. Chem. Phys. 55, 4107–4115 (1971).

    CAS  Google Scholar 

  196. J. A. Hall and W. G. Richards, A theoretical study of the spectroscopic states of the CF molecule, Mol. Phys. 23, 331–343 (1972).

    CAS  Google Scholar 

  197. P. S. Julienne, M. Krauss, and B. Donn, Formation of OH through inverse predissociation, Astrophys. J. 170, 65–70 (1971).

    CAS  Google Scholar 

  198. M. Ackerman and F. Biaume, Structure of the Schumann-Runge bands from the 0–0 to the 13–0 band, J. Mol. Spectrosc. 35, 73–82 (1970).

    CAS  Google Scholar 

  199. I. Riess and Y. Ben-Aryeh, Application of the quantum Franck-Condon principle to predissociation in oxygen, J. Quant. Spectrosc. Radiat. Transfer 9, 1463–1468 (1969).

    CAS  Google Scholar 

  200. J. N. Murrell and J. M. Taylor, Predissociation in diatomic spectra with special reference to the Schumann-Runge bands of O2, Mol. Phys. 16, 609–621 (1969).

    CAS  Google Scholar 

  201. R. D. Hudson and S. H. Mahle, Photodissociation rates of molecular oxygen in the mesophere and lower thermosphere, J. Geophys. Res. 77, 2902–2914 (1972).

    CAS  Google Scholar 

  202. P. S. Julienne and M. Krauss, Predissociation of the Schumann-Runge Bands of O2, NRL Memorandum Report 2900, Naval Research Laboratory, Washington, D.C. (1974).

    Google Scholar 

  203. P. S. Julienne and M. Krauss, Predissociation of the Schumann-Runge bands of O2, J. Mol. Spectrosc. 56, 270–308 (1975).

    CAS  Google Scholar 

  204. G. Herzberg, Predissociation and similar phenomenon, Ergeh. Exakten. Naturwiss. 10, 207–284 (1931).

    Google Scholar 

  205. R. S. Mulliken, Some neglected subcases of predissociation in diatomic molecules, J. Chem. Phys. 33, 247–252 (1960).

    CAS  Google Scholar 

  206. P. S. Julienne, private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Langhoff, S.R., Kern, C.W. (1977). Molecular Fine Structure. In: Schaefer, H.F. (eds) Applications of Electronic Structure Theory. Modern Theoretical Chemistry, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8541-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8541-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8543-1

  • Online ISBN: 978-1-4684-8541-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics