Skip to main content

Introduction

  • Chapter

Abstract

In the quantum mechanical treatment of the stationary states of molecular systems (ground state and excited states) one uses frequently the following Hamiltonian:

$$H = \sum\limits_{i = 1}^N {\left( { - \frac{{{h^2}}}{{2m}})\nabla _i^2 - \sum\limits_{\alpha = 1}^{{N_\alpha }} {\frac{{{Z_\alpha }{e^2}}}{{{r_{\alpha i}}}}} } \right)} + \sum\limits_{i < j}^N {\frac{{{e^2}}}{{{r_{ij}}}} + \sum\limits_{\alpha < \beta } {\frac{{{Z_\alpha }{Z_\beta }{e^2}}}{{{R_{\alpha \beta }}}}} } $$
((1.1))

Here r αi is the distance between electron i and nucleus α, Z α e is the charge of nucleus α, r ij is the distance between electrons i and j, and R αβ is the distance between nuclei α and β. The use of (1.1) implies the following approximations: (a) We use the Born-Oppenheimer approximation(1); i.e., we consider the determination of the electronic wave function when the nuclear framework is momentarily fixed, (b) The Hamiltonian (1.1) is a nonrelativistic Hamiltonian; we have omitted the spin-orbit interaction term and various other small terms. As a consequence of approximation (b) this Hamiltonian is spin free, i.e., none of the terms appearing in it depends explicitly on the spin variables. The total spin operator and its z component commute with the Hamiltonian. They are constants of the motion and, therefore, each state of the system can be characterized by a simultaneous eigenfunction of these commuting operators. We can classify the eigenstates as singlets (S = 0), doublets (S = 1/2), triplets (S = 1), and so on; the use of the spin-free Hamiltonian (1.1) implies electronic states with definite multiplicities (2S + 1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Born and J. R. Oppenheimer, Ann. Phys. (Leipzig) 84, 457 (1927).

    CAS  Google Scholar 

  2. W. Pauli, Z Phys. 31, 765 (1925).

    Article  CAS  Google Scholar 

  3. O. Stern and W. Gerlach, Z. Phys. 8, 110 (1922);

    Article  Google Scholar 

  4. O. Stern and W. Gerlach, Z. Phys. 9, 349 (1922).

    Article  Google Scholar 

  5. G. E. Uhlenbeck and S. Goudsmit, Naturwissenschaften 13, 953 (1925);

    Article  CAS  Google Scholar 

  6. G. E. Uhlenbeck and S. Goudsmit, Nature 117, 264 (1926).

    Article  CAS  Google Scholar 

  7. P. A. M. Dirac, Proc. R. Soc. London A117, 610 (1928);

    Google Scholar 

  8. P. A. M. Dirac, Proc. R. Soc. London A118, 351 (1928).

    Google Scholar 

  9. W. Pauli, Z. Phys. 43, 601 (1927).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Pauncz, R. (1979). Introduction. In: Spin Eigenfunctions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8526-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8526-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8528-8

  • Online ISBN: 978-1-4684-8526-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics