Skip to main content

Multisulfur Metal Sites in Enzymes, Complexes, Clusters, and Solids: Possible Relevance for Nitrogenase

  • Chapter

Abstract

This volume deals with biological nitrogen fixation and chemical systems which may offer analogy with or insight into the biological process. This chapter deals with certain biochemical and chemical systems which have not been studied specifically in the context of the nitrogen fixation problem. Rather, recent results in the areas non-nitrogenase Mo enzymes and the coordination and solid state chemistry of molybdenum are discussed. This chemistry reveals some of the structural, spectroscopic and mechanistic possibilities which present themselves when multisulfur metal sites are present.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. H. Garrett and A. Nason, Further Purification and Properties of Neurospora Nitrate Reductase, J. Biol. Chem. 244:2810 (1969).

    Google Scholar 

  2. C. H. MacGregor, A A. Schnaitman, D. E. Normanseil, and M. G. Hodgins, Purification and Properties of Nitrate Reductase from Escherichia coli K12, J. Biol. Chem. 249:5321 (1974).

    PubMed  CAS  Google Scholar 

  3. P. Forget, The Bacterial Nitrate Reductases: Solubilization, Purification, and Properties of the Enzyme A of Escherichia coli K12, Eur. J. Biochem. 42:325 (1974).

    Article  PubMed  CAS  Google Scholar 

  4. M. W. W. Adams and L. E. Mortenson, The Effect of Cyanide and Ferricyanide on the Activity of Dissimilatory Nitrate Reductase of Escherichia coli, J. Biol. Chem. 257:1791 (1982).

    PubMed  CAS  Google Scholar 

  5. C.A. Nelson and P. Handler, Preparation of Bovine Xanthine Oxidase and the Subunit Structures of Some Iron Flavo Proteins, J. Biol. Chem, 243:5368 (1968).

    PubMed  CAS  Google Scholar 

  6. L. I. Hart, M. A. McGartell, H. R. Chapman, and R. C. Bray, The Composition of Milk Xanthine Oxidase, Biochem. J. 116:851 (1970),

    PubMed  CAS  Google Scholar 

  7. K. V. Rajagopalan, I. Fridovich, and P. Handler, Hepatic Aldehyde Oxidase: I. Purification and Properties, J. Biol. Chem. 237:922 (1962).

    PubMed  CAS  Google Scholar 

  8. H. J. Cohen and I. Fridovich, Hepatic Sulfite Oxidase: Purification and Properties, J. Biol. Chem. 246:359 (1971).

    PubMed  CAS  Google Scholar 

  9. H. G. Enoch and R. L. Lester, Purification and Properties of Formate Dehydrogenase and Nitrate Reductase from Escherichia coli, J. Biol. Chem. 250:6693 (1975).

    PubMed  CAS  Google Scholar 

  10. P. A. Scherer and R. K. Thauer, Purification and Properties of Reduced Ferredoxin:CO2 Oxidoreductase from Clostridium pasteurianum, A Molybdenum-Iron-Sulfur Protein, Eur. J. Biochem. 85:125 (1978).

    Article  PubMed  CAS  Google Scholar 

  11. A. Nason, K.- Y. Lee, S.- S. Pan, P. A. Ketchum, A. Lamberti, and J. DeVries, In vitro Formation of Assimilatory Reduced Nicotinamide Adenine Dinucleotidephosphate :Nitrate Reductase from a Neurospora Mutant and a Component of Molybdenum Enzymes, Proc. Nat. Acad. Sci. USA 74:5468 (1977).

    Article  Google Scholar 

  12. P. Pienkos, V. K. Shah, and W. J. Brill, Molybdenum Cofactors from Molybdoenzymes and in vitro Reconstitution of Nitrogenase and Nitrate Reductase, Proc. Nat. Acad. Sci. USA 74:5468 (1977).

    Article  PubMed  CAS  Google Scholar 

  13. B. K. Burgess, D. L. Jacobs, and E. I. Stiefel, Large-Scale Purification of High Activity Azotobacter vinelandii Nitrogenase, Biochim. Biophys. Acta 614:196 (1980).

    CAS  Google Scholar 

  14. L. E. Mortenson and S. Hinton, personal communication.

    Google Scholar 

  15. J. L. Johnson, The Molybdenum Cofactor Common to Nitrate Reductase Xanthine Dehydrogenase and Sulfite Oxidase, in: “Molybdenum and Molybdenum-Containing Enzymes,” M. P. Coughlan, ed., Pergamon Press, New York, p. 346 (1980).

    Google Scholar 

  16. S.- S. Yang, W. H. Pan, G. D. Friesen, B. K. Burgess, J. L. Corbin, E. I. Stiefel, and W. E. Newton, Iron-Molybdenum Cofactor from Nitrogenase: Modified Extraction Methods as Probes for Composition, J Biol. Chem. , in press.

    Google Scholar 

  17. G. Palmer and J. S. Olson, Concepts and Approaches to the Understanding of Electron Transfer Processes in Enzymes Containing Multiple Redox Centers, in: “Molybdenum and Molybdenum-Containing Enzymes,” M. P. Coughlan, ed., Pergamon Press, New York, p. 187 (1980).

    Google Scholar 

  18. S. Gutteridge and R. C. Bray, Studies by Electron Paramagnetic Resonance on the Nature and Reactions of the Molybdenum Centre of Xanthine Oxidase, in: “Molybdenum and Molybdenum-Containing Enzymes,” M. P. Coughlan, ed., Pergamon Press, New York, p. 221, (1980).

    Google Scholar 

  19. E. I. Stiefel, The Structure and Spectra of Molybdoenzyme Active Sites and Their Models, in: “Molybdenum and Molybdenum-Containing Enzymes,” M. P. Coughlan, ed., Pergamon Press, New York, p. 41 (1980).

    Google Scholar 

  20. S. P. Cramer, H. B. Gray, and K. V. Rajagopalan, The Molybdenum Site of Sulfite Oxidase: Structural Evidence from X-ray Absorption, J. Am. Chem. Soc. 101:2772 (1979).

    Article  CAS  Google Scholar 

  21. J. Bordas, R. C. Bray, C. D. Garner, S. Gutteridge, and S. S. Hasnaln, X-ray Absorption Spectroscopy of Xanthine Oxidase. The Molybdenum Centres of the Functional and the Desulpho Forms, Biochem. J. 191:499 (1980).

    PubMed  CAS  Google Scholar 

  22. S. P. Cramer and K. O. Hodgson, X-ray Absorption Spectroscopy — A New Structural Method and Its Application in Bioinorganic Chemistry, Progr. Inorg. Chem. 25:1 (1979).

    Article  CAS  Google Scholar 

  23. S. P. Cramer, K. O. Hodgson, E. I. Stiefel, and W. E. Newton, A Systematic X-ray Absorption Study of Molybdenum Complexes. The Accuracy of Structural Information from Extended X-ray Absorption Fine Structure, J. Am. Chem. Soc. 100:2849 (1978).

    Google Scholar 

  24. S. P. Cramer, K. O. Hodgson, W. O. Gillum, and L. E. Mortenson, The Molybdenum Site of Nitrogenase Preliminary Structural Evidence from X-ray Absorption Spectroscopy, J. Am. Chem. Soc. 100:3398 (1978).

    Article  CAS  Google Scholar 

  25. S. P. Cramer, W. O. Gillum, K. O. Hodgson, L. E. Mortenson, E. I. Stiefel, J. R. Chisnell, W. J. Brill, and V. K. Shah, The Molybdenum Site of Nitrogenase 2. A Comparative Study of Mb-Fe Proteins and the Iron-Molybdenum Cofactor by Absorption Spectroscopy, J. Am. Chem. Soc. 100:3814 (1978).

    Article  CAS  Google Scholar 

  26. T. D. Tullius, D. M. Kurtz Jr., S. D. Conradson and K. O. Hodgson, The Molybdenum Site of Xanthine Oxidase. Structural Evidence from X-ray Absorption Spectroscopy, J. Am. Chem. Soc. 101:2776 (1979).

    Article  CAS  Google Scholar 

  27. S. P. Cramer, R. Wahl, and K. V. Rajagopalan, Molybdenum Sites of Sulfite Oxidase and Xanthine Dehydrogenase. A Comparison by EXAFS, J. Am. Chem. Soc. 103:7721 (1981).

    Article  CAS  Google Scholar 

  28. S. Gutteridge, S. J. Tanner, and R. C. Bray, Comparison of the Molybdenum Centres of Native and Desulpho Xanthine Oxidase. The Nature of the Cyanide Labile Sulphur Atom and the Nature of the Proton Accepting Group, Biochem. J. 175:887 (1978).

    PubMed  CAS  Google Scholar 

  29. E. I. Stiefel, W. E. Newton, G. D. Watt, K. L. Hadfield, and W. A. Bulen, Molybdenum Enzymes: The Role of Electrons, Protons and Dihydrogen, in: “Advances in Chemistry Series No. 162. Bioinorganic Chemistry II,” K. N. Raymond, ed., American Chemical Society, Washington, D. C. p. 353 (1977).

    Google Scholar 

  30. E. I. Stiefel, Proposed Molecular Mechanism for the Action of Molybdenum in Enzymes, Proc. Nat. Acad. Sci. USA 70:788 (1973).

    Article  Google Scholar 

  31. B. A. Moyer and T. J. Meyer, Properties of the Oxo/Aquo System (bpy)2(py)RuO2+/(bipy)2PyRu(OH2)2+, Inorg. Chem. 20:436 (1981).

    Article  CAS  Google Scholar 

  32. J. M. Berg, K. O. Hodgson, S. P. Cramer, J. L. Corbin, A. Elsberry, N. Pariyadath, and E. I. Stiefel, Structural Results Relevant to the Molybdenum Sites in Xanthine Oxidase and Sulfite Oxidase. The Crystal Structures of MoO2L, L = (SCH2CH2)2NCH2CH2X with X = SCH3, N(CH3)2·, J. Am. Chem. Soc. 101:2774 (1979).

    Article  CAS  Google Scholar 

  33. E. I. Stiefel, K. F. Miller, A. E. Bruce, J. L. Corbin, J. M. Berg, and K. O. Hodgson, A Nonoctahedral Dioxo Molybdenum Complex with a Coordinated Partial Disulfide Bond, J. Am. Chem. Soc. 102:3624 (1980).

    Article  CAS  Google Scholar 

  34. E. I. Stiefel, A. E. Bruce, J. L. Corbin, J. M. Berg, D. M. Spira, and K. O. Hodgson, Six-Coordinate Dioxomolybdenum(VI) Complexes Containing a Non-Octahedral Structure with a Short Sulfur-Sulfur Distance, unpublished results.

    Google Scholar 

  35. A. E. Bruce, J. L. Corbin, P. L. Dahlstrom, J. R. Hyde, M. Minelli, E. I. Stiefel, J. T. Spence, and J. Zubieta, Investigations of the Coordination Chemistry of Molybdenum with Facultative Tetradentate Ligands Possessing N2S2 Donor Sets. III. The Crystal and Molecular Structures of MoP2[(SCH2CH2NMe(CH2)nNMeCH2CH2S)] n = 2 and 3 and [MoO2 (SC6H4NHCH2CH2NHC6H4S)] and a Comparison to the Structure of MoO2(SCH2CH2NHCH2CH2SCH2CH2S), a Complex with NS3 Donor Set. Inorg. Chem., in press.

    Google Scholar 

  36. C. D. Garner, L. Hill, N. C. Howlader, M. R. Hyde, F. E. Mabbs, and V. I. Rutledge, Crystal and Electronic Structure and Reactivity of Mononuclear Halogeno-oxomolybdenum(V) Complexes, J. Less-Common Metals 54:27 (1977).

    Article  CAS  Google Scholar 

  37. E. I. Stiefel, K. F. Miller, A. E. Bruce, J. Heinecke, N. Pariyadath, J. L. Corbin, J. M. Berg, and K. O. Hodgson, Mo(VI) Complexes of N,S-Donor Ligands: Relevance to Molybdenum Enzymes, in: “Molybdenum Chemistry of Biological Significance,” W. E. Newton and S. Otsuka, eds., Plenum Press, New York, p. 279 (1980).

    Chapter  Google Scholar 

  38. J. M. Berg, D. Spira, K. Wo, B. McCord, R. Lye, M. S. Co, J. Belmont, C. Barnes, K. Kosydor, S. Rayback, K. O. Hodgson, A. E. Bruce, J. L. Corbin, K. F. Miller and E. I. Stiefel, Structural Comparison of Octahedral MoO2 2+ Complexes of Bidentate and Linear Tetradentate N,S-Donor Ligands, unpublished results.

    Google Scholar 

  39. K. F. Miller, A. E. Bruce, N. Pariyadath, J. Heinecke, J. L. Corbin, and E. I. Stiefel, unpublished results.

    Google Scholar 

  40. J. M. Berg, K. O. Hodgson, A. E. Bruce, J. L. Corbin, N. Pariyadath, and E. I. Stiefel, The Crystal and Molecular Structures of Dioxo Molybdenum(VI) Complexes of Tripodal, Tetradentate N,S-Ligands, unpublished results.

    Google Scholar 

  41. W. H. Pan, M. E. Leonowicz, and E. I. Stiefel, Facile Routes to the Synthesis of New Mo and W Sulfido Complexes. The Structure of Mo3S92-, unpublished results.

    Google Scholar 

  42. W. Rittner, A. Müller, A. Neumann, W. Bather, and R. C. Sharma, Generation of the Trangulo-Group Mov-S2 in the Condensation of MoO2S2 2- to [MoV2O2S2(S2)2]2-, Angew. Chem. Int. Ed. Engl. 18:436 (1979).

    Article  Google Scholar 

  43. A. Müller, W. O. Nolte, and B. Krebs, [(S2)2Mo(S2) 2Mo(S2)2]2-, a Novel Complex Containing only S2 2- Ligands and a Mo-Mo Bond, Angew. Chem. Int. Ed. Engl. 17:279 (1978).

    Article  Google Scholar 

  44. K. F. Miller, A. E. Bruce, J. L. Corbin, S. Wherland, and E. I. Stiefel, Mo2S4 2+ Core: New Synthesis, New Complexes and Electrochemical Diversity, J Am. Chem. Soc. 102:5102 (1980).

    Article  CAS  Google Scholar 

  45. C. O. B. Dim, T. R. Halbert, C. McGauley, K. F. Miller, W.- H. Pan, and E. I. Stiefel, unpublished results.

    Google Scholar 

  46. G. J. Kubas and P. J. Vergamini, Synthesis Characterization and Reactions of Iron-Sulfur Clusters Containing the S2 Ligand: [Cp2Fe2(S2)(SR)2]0,1+, [Cp4Fe4S5]0,1+,2+ and [Cp4Fe4S6], Inorg. Chem. 20:2267 (1981).

    Article  Google Scholar 

  47. M. R. DuBois, D. L. DuBois, M. C. VanDerveer, and R. C. Haltiwanger, Synthesis, Structures and Reactions of Molybdenum Complexes with Sulfido and Disulfido Ligands, Inorg. Chem. 20:3064 (1981).

    Article  Google Scholar 

  48. M. R. DuBois, M. C. VanDerveer, D. L. DuBois, R. C. Haltiwanger, and W. K. Miller, Characterization of Reactions of Hydrogen with Coordinated Sulfido Ligands, J. Am. Chem. Soc. 102:7456 (1980).

    Article  CAS  Google Scholar 

  49. M. R. DuBois, R. C. Haltiwanger, D. J. Miller, and G. Glatzmaier, Characterization and Reaction Studies of Dimeric Molybdenum(III) Complexes with Bridging Dithiolate Ligands Catalytic Reduction of Acetylene to Ehtylene, J. Am. Chem. Soc. 101:5245 (1979).

    Article  CAS  Google Scholar 

  50. D. Seyferth and R. S. Henderson, Photochemically Induced Insertion of Acetylenes into μ-Dithiobis-(tricarbonyliron), J. Organometal. Chem. 182:C39 (1979).

    Article  CAS  Google Scholar 

  51. D. C. Owsley and G. K. Helmkamp, The Incorporation of Molecular Nitrogen into an Organic Molecule, J. Am. Chem. Soc. 89:4558 (1967).

    Article  CAS  Google Scholar 

  52. R. G. Dickenson and L. Pauling, Crystal Structure of Molybdenite, J. Am. Chem. Soc. 45:1466 (1923).

    Article  Google Scholar 

  53. T. P. Prasad, E. Diemann, and A. Müller, Thermal Decomposition of (NH4)2MoO2S2, (NH4)2MOS4, (NH4)2WO2S2 and (NH4)2WS4, J. Inorg. Nucl. Chem. 35:1895 (1973)

    Article  CAS  Google Scholar 

  54. R. R. Chianelli and M. B. Dines, Low-Temperature Solution Preparation of Group 4B, 5B and 6B Transition Metal Dichalcogenides, Inorg. Chem. 17:2758 (1978).

    Article  CAS  Google Scholar 

  55. F. T. Eggertsen and R. M. Roberts, Molybdenum Disulfide of High Surface Area, J. Phys. Chem. 63:1981 (1959).

    Article  CAS  Google Scholar 

  56. G. C. Stevens and T. Edmonds, Electron Spectroscopy for Chemical Analysis of Molybdenum Sulfides, J. Catal. 37:544 (1975).

    Article  CAS  Google Scholar 

  57. E. Diemann, Radiale Verteilungsfunktionen V. Strukturuntersuchungen an Nicht Kristallinem Molybdantrisulfid, Wolframtrisulfid and Molybdantriselenid, Z Anorg. Allg. Chem. 432:127 (1977).

    Article  CAS  Google Scholar 

  58. K. S. Liang, S. P. Cramer, D. C. Johnston, C. H. Chang, A. J. Jacobson, J.P. DeNeufville, and R. R. Chianelli, Amorphous MoS3 and WS3, J. Non-Crystalline Solids 42:345 (1980).

    Article  CAS  Google Scholar 

  59. J. Rijnsdorp and F. Jellinek, The Crystal Structure of Niobium Trisulfide, NbS3, J. Solid State Chem. 25:325 (1978).

    Article  CAS  Google Scholar 

  60. F. A. Levy, ed., “Intercalated Layered Materials,” Reidel Pub., Hingham, MA. (1979).

    Google Scholar 

  61. M. S. Whittingham, Intercalation Chemistry and Energy Storage, J. Solid State Chem. 29:303 (1979).

    Article  CAS  Google Scholar 

  62. A. Lefr and R. Schollhorn, Solvation Reactions of Layered Ternary Sulfides AxTiS2, AxNbS2, and AxTaS2, Inorg. Chem. 16:2950 (1977).

    Article  Google Scholar 

  63. P. Grange, Catalytic Hydrodesulfurization, Catal. Rev. Sci. Eng. 21:135 (1980).

    Article  CAS  Google Scholar 

  64. C. N. Satterfield, “Hererogeneous Catalysis in Practice,” McGraw-Hill Book Company, New York, p. 259 (1980).

    Google Scholar 

  65. S. J. Tauster, T. A. Pecoraro and R. R. Chianelli, Structure and Properties of Molybdenum Sulfide: Correlation of O2 Chemisorption with Hydrodesulfurization Activity, J. Catal. 63:515 (1980).

    Article  CAS  Google Scholar 

  66. C. J. Wright and C. Sampson, Hydrogen Sorption by Molybdenum Sulfide Catalysts, J. Chem. Soc. (Faraday I) 76:1583 (1980).

    Google Scholar 

  67. F. E. Massoth and C. L. Kibby, Studies of Molybdenum — Alumina Catalysts V Relation Between Catalyst Sulfided State and Activity for Thiophene Hydrodesulfurization, J. Catal. 47:300 (1977).

    Article  CAS  Google Scholar 

  68. H. Kwart, G. C. A. Schuit, and B. C. Gates, Hydrodesulfurization of Thiophenic Compounds: The Reaction Mechanism, J. Catal. 61:128 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Stiefel, E.I., Chianelli, R.R. (1983). Multisulfur Metal Sites in Enzymes, Complexes, Clusters, and Solids: Possible Relevance for Nitrogenase. In: Müller, A., Newton, W.E. (eds) Nitrogen Fixation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8523-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8523-3_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8525-7

  • Online ISBN: 978-1-4684-8523-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics