Skip to main content

Biochemical Derangements in Diabetes Mellitus

  • Chapter
The Endocrine Pancreas and Juvenile Diabetes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 124))

Abstract

During the fifty-sixth year since the discovery of insulin, most physicians who are concerned with the care of the diabetic have become more willing to accept the possibility that the development of diabetic complications may be related to the metabolic consequences of hyperglycemia. Since those tissues which require insulin for the intracellular transport of glucose (i.e., muscle and fat) appear to be relatively immune to the ravages of diabetes, current research into the mechanisms by which an elevated glucose concentration could result in cellular damage has focused upon the so-called “noninsulin-dependent pathways of glucose metabolism.” Obviously, this term implies that, whereas these pathways are not directly activated by insulin, the hyperglycemia which results from insulin deficiency does foster their activation. It is the purpose of this review to consider certain of these pathways and the roles which they have been speculated to play in the development of diabetic complications.

Original research supported by grants from the Juvenile Diabetes Foundation, Veterans Administration, and grants RR-32 and AM-21065 from the National Institutes of Health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beisswenger, P.J. 1976. Glomerular basement membrane: Biosynthesis and chemical composition in the streptozotocin diabetic rat. J. Clin. Invest. 58:844–852.

    Article  PubMed  CAS  Google Scholar 

  • Beisswenger, P.J. and Spiro, R.G. 1970. Human glomerular basement membrane: Chemical alteration in diabetes mellitus. Science 168:596–598.

    Article  PubMed  CAS  Google Scholar 

  • Bunn, H.F., Haney, D.N., Gabbay, K.H., and Gallop, P.M. 1975. Further identification of the nature and linkage of the carbohydrate in hemoglobin AIc Bio ehem. Biophys. Res. Commun. 67:103–109.

    Article  CAS  Google Scholar 

  • Caspary, W.F. and Crane, R.K. 1970. Active transport of myoinositol and its relation to the sugar transport system in hamster small intestine. Biochim. Biophys. Acta 203:308–316.

    Article  PubMed  CAS  Google Scholar 

  • Chylack, L.T. Jr. and Kinoshita, J.H. 1969. A biochemical evaluation of a cataract induced in a high glucose medium. Invest. Ophthal. 8:401–412.

    PubMed  CAS  Google Scholar 

  • Clements, R.S. Jr., Morrison, A.D., and Winegrad, A.I. 1969. Polyol pathway in aorta: Regulation by hormones. Science 166:1007–1008.

    Article  PubMed  CAS  Google Scholar 

  • Clements, R.S. Jr. and Reynertson, R. 1977. Myoinositol metabolism in diabetes mellitus: Effect of insulin treatment. Diabetes 26:215–221.

    Article  PubMed  CAS  Google Scholar 

  • Clements, R.S. Jr. and Rhoten, W.B. 1976. Phosphoinositide metabolism and insulin secretion from isolated rat pancreatic islets. J. Clin. Invest. 57:684–691.

    Article  PubMed  CAS  Google Scholar 

  • Clements, R.S. Jr., Weaver, J.P., and Winegrad, A.I. 1969. The distribution of polyol:NADP oxidoreductase in mammalian tissues. Biochem. Biophys. Res. Commun. 37:347–353.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, M.P. and Vogt, C. 1972. Evidence for enchanced basement membrane synthesis and lysine hydroxylation in renal glomerulus in experimental diabetes. Biochem. Biophys. Res. Commun. 49:1542–1546.

    Article  PubMed  CAS  Google Scholar 

  • Colwell, J.A., Chambers, A., and Laimins, M. 1975. Inhibition of labile aggregation-stimulating substance (LASS) and platelet aggregation in diabetes mellitus. Diabetes 24:684–687.

    Article  PubMed  CAS  Google Scholar 

  • Fushimi, H. and Tarui, S. 1976. β-glycosidases and diabetic microangiopathy. I. Decreases of β-glycosidase activities in diabetic rat kidney. J. Biochem. 79:265–270.

    PubMed  CAS  Google Scholar 

  • Gabbay, K.H. 1973. pp 417–424. IN R.A. Camerini-Davalos and H.S. Cole (Eds.) Vascular and neurologic changes in early diabetes. New York: Academic Press.

    Google Scholar 

  • Gabbay, K.H., Merola, L.O., and Field, R.A. 1966. Sorbitol pathway: Presence in nerve and cord with substrate accumulation in diabetes. Science 151:209–210.

    Article  PubMed  CAS  Google Scholar 

  • Gandhi, V.S. and Bleicher, S.J. 1975. “Fast” hemoglobin, diabetes and pregnancy. Diabetes 24:415.

    Google Scholar 

  • Grant, M.E., Kefalides, N.A., and Prockop, D.J. 1972. The biosynthesis of basement membrane collagen in embryonic chick cells and a time-dependent conversion to chains in intact lens. J. Biol. Chem. 247:3545–3551.

    PubMed  CAS  Google Scholar 

  • Greene, D.A., De Jesus, P.V., and Winegrad, A.I. 1975. Effects of insulin and dietary myoinositol on impaired peripheral motor nerve conduction velocity in acute streptozotocin diabetes. J. Clin. Invest. 55:1326–1336.

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson, H.S. and Reinertsen, J.L. 1971. Phosphoinositide interconversion: A model for control of Na+ and K permeability in the nerve axon membrane. Biochem. Biophys. Res. Commun. 44:1258–1264.

    Article  PubMed  CAS  Google Scholar 

  • Kefalides, N.A. 1974. Biochemical properties of human glomerular basement membrane in normal and diabetic kidneys. J. Clin. Invest. 53:403–407.

    Article  PubMed  CAS  Google Scholar 

  • Khalifa, A.S. and Cohen, M.P. 1975. Glomerular protocollagen lysylhydroxylase activity in streptozotocin diabetes. Biochim. Biophys. Acta 386:332–339.

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita, J.H. 1965. Cataracts in galactosemia. Invest. Ophthal. 4:786–799.

    PubMed  CAS  Google Scholar 

  • Kuck, J.F.R. Jr. 1970. Response of the mouse lens to high concentrations of glucose or galactose. Ophthal. Res. 1:166–174.

    Article  CAS  Google Scholar 

  • Lemback, K. and Charalampous, F.C. 1967. Metabolic functions of myoinositol. VI. Impairment of amino acid transport in KB cells caused by inositol deficiency. J. Biol. Chem. 242: 2606–2614.

    Google Scholar 

  • McMillan, D.E. 1972. Elevation of glycoprotein fucose in diabetes mellitus. Diabetes 21:863–871.

    PubMed  CAS  Google Scholar 

  • Micheli, R.H. 1975. Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta 415:81–147.

    Article  Google Scholar 

  • Morrison, A.D., Clements, R.S. Jr., and Winegrad, A.I. 1973. Effects of elevated glucose concentrations on the metabolism of the aortic wall. J. Clin. Invest. 51:3114–3123.

    Article  Google Scholar 

  • Peterson, C.M., Jones, R.L., Koenig, R.J., Melvin, E.T., and Lehrman, M.L. 1977. Reversible hematologic sequelae of diabetes mellitus. Ann. Int. Med. 86:425–429.

    PubMed  CAS  Google Scholar 

  • Pumphrey, A.M. 1969. Incorporation of (32P) orthophosphate into brain-slice phospholipids and their precursors: Effects of electrical stimulation. Biochem. J. 112:61–70.

    PubMed  CAS  Google Scholar 

  • Stewart, M.A., Kurien, M.M., Sherman, W.R., and Cotlier, E.V. 1968. Inositol changes in nerve and lens of galactose fed rats. J. Neuroohem. 15:941–946.

    Article  CAS  Google Scholar 

  • Stewart, M.A., Sherman, W.R., Kurien, M.M., Moonsammy, G.I., and Wisgerhof, M. 1967. Polyol accumulations in nervous tissue of rats with experimental diabetes and galactosemia. J. Neuroohem. 14:1057–1066.

    Article  CAS  Google Scholar 

  • Stevens, V.J., Vlassara, H., Abati, A., and Cerami, A. 1977. Nonenzymatic glycosylation of hemoglobin. J. Biol. Chem. 252: 2998–3002.

    PubMed  CAS  Google Scholar 

  • Takenawa, T. and Egawa, K. 1977. CDP-diglyceride:.inositol transferase from rat liver. J. Biol. Chem. 252:5419–5423.

    PubMed  CAS  Google Scholar 

  • van Heyningen, R. 1959. Formation of polyols by the lens of the rat with “sugar” cataract. Nature 184:194–195.

    Article  Google Scholar 

  • Wahl, P., Deppermann, D., Deschner, W., Fuchs, E., and Rexroth, W. 1973. pp. 147–153. IN R.A. Camerini-Davolos and H.S. Cole (Eds.) Vascular and neurologic changes in early diabetes. New York: Academic Press.

    Google Scholar 

  • Waitzman, M.B., Colley, A.M., and Nardelli-Olkoska, K. 1977. Metabolic approaches to studies on diabetic microangiopathy. Diabetes 26:510–517.

    Article  PubMed  CAS  Google Scholar 

  • Westberg, N.G. and Michael, A.F. 1973. Human glomerular basement membrane: Chemical composition in diabetes mellitus. Acta Med. Scand. 144:39–47.

    Google Scholar 

Discussion References

  • Cerami, A., Koenig, R.J., Peterson, C.M., and Stevens, V.M. 1978. Formation of Hb AIc as a biochemical model for the sequelae of diabetes. IN George Brewer (Ed.) Proc. 4 th Internat’l. Conf. on Red Cell Metabol. and Funct., Ann Arbor, MI. New York: Alan R. Liss, Inc. In press.

    Google Scholar 

  • Cole, R.A., Bunn, H.F., and Soeldner, J.S. 1977. New rapid assay method for hemoglobin Hb AIc and total fast (abstract). Diabetes 26(Suppl. 1):392.

    Google Scholar 

  • Fluckiger, R. and Winterhalter, K.H. 1976. In-vitro synthesis of hemoglobin AIc. FEBS Lett. 71:356–360.

    Article  PubMed  CAS  Google Scholar 

  • Javid, J. Pettis, P.K., Koenig, R.J., and Cerami, A. 1978. Immunologic characterization and quantification of Hb AIc. Brit. J. Haematol. 38:329–337.

    Article  Google Scholar 

  • Koenig, R.J., Peterson, C.M., Jones, R.L., Saudek, C., Lehrman, M., and Cerami, A. 1976. The correlation of glucose regulation and hemoglobin AIc in diabetes mellitus. New Eng. J. Med. 295:417–420.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, G.E., Martin, A.P., Townsend, J.R., and Vorbeck, M.L. 1977. Basement membrane synthesis in spontaneously diabetic Mystromys albicaudatus. J. Cell Biol. 75:155a. (Abstr.)

    Google Scholar 

  • Stevens, V.S., Vlassara, H., Abati, A., and Cerami, A. 1977. Nonenzymatic glycosylation of hemoglobin. J. Biol. Chem. 252: 2998–3002.

    PubMed  CAS  Google Scholar 

  • Trivelli, L.A., Ranney, H.M., and Lai, H-T. 1971. Hemoglobin components in patients with diabetes mellitus. New Eng. J. Med. 284:353–357.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Clements, R.S. (1979). Biochemical Derangements in Diabetes Mellitus. In: Klachko, D.M., Anderson, R.R., Burns, T.W., Werner, H.V. (eds) The Endocrine Pancreas and Juvenile Diabetes. Advances in Experimental Medicine and Biology, vol 124. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8508-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8508-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8510-3

  • Online ISBN: 978-1-4684-8508-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics