Skip to main content

Abstract

Raphides of calcium oxalate were among the first objects to be observed under the optical microscope. Leeuwenhoek described the raphides which occur in Arum in a letter to Mr. H. Oldenberg written August 14, 1675. One of the first signs of life in Precambrian rocks were the calcareous filamentous algae of thin limestone reefs which are scarcely different from their counterparts in a modern coralline community. Yet in spite of the fact that deposits of calcium salts in plants are abundant, diverse, and complex and the mineral matter, chemically and physically, indistinguishable from the same substances in animals, there seems to be a lack of studies on the metabolism and structure of plants, comparable to those of bone and shell. A great deal of information is available from the literature as to the location and appearance of calcium deposits in plants, but surprisingly little can be found about the mechanism of calcification, and still less about the ultrastructural features of the event.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhromeiko, A. I. 1936. Über die Ausscheidung mineralischer Stoffe durch Pflanzenwurzeln. Z. Pflanzenernähr. Dueng. Bodenk., 42: 156–186.

    Google Scholar 

  • Alexopoulos, C. J. 1952. Introductory Mycology. New York, John Wiley & Sons, Inc.

    Google Scholar 

  • Arens, K. 1934. Die kutikuläre Exkretion des Laubblattes. Jahrb. Wiss. Bot., 80: 248–300.

    CAS  Google Scholar 

  • Arnott, H. J. 1962. The seed, germination and seedling of Yucca. Univ. Calif. Pub. Bot., 35: 11–64.

    Google Scholar 

  • Arnott, H. J. 1966. Studies of calcification in plants. In Third European Symposium on Calcified Tissues. Fleisch, H., Blackwood, H. J. J., and Owen, M., eds. Berlin, Springer-Verlag.

    Google Scholar 

  • Arnott, H. J., and F. G. E. Pautard. 1965. Mineralization in plants. Amer. J. Bot., 52: 613.

    Google Scholar 

  • Arnott, H. J., H. Steinfink, and F. G. E. Pautard. 1965. Structure of calcium oxalate monohydrate. Nature (London), 208: 1197–1198.

    CAS  Google Scholar 

  • Audus, L. J. 1962. The mechanism of the perception of gravity by plants. Symp. Soc. Exp. Biol., 16: 197–226.

    Google Scholar 

  • Baas-Becking, L. G. M., and E. W. Galliher. 1931. Wall structure and mineralization in coralline algae. J. Phys. Chem., 35: 467–479.

    CAS  Google Scholar 

  • Bailey, I. W., and C. G. Nast. 1948. Morphology and relationship of lllicium, Schisandra and Kadsura. I. Stem and leaf. J. Arnold Arbor., 29: 77–89.

    Google Scholar 

  • Bannister, F. A., and M. H. Hey. 1936. Report on some crystalline components of the Weddell Sea deposits. Disc. Rep., 13: 60–69.

    CAS  Google Scholar 

  • Basset, C. A. L., and T. P. Ruedi. 1966. Transformation of fibrous tissue to bone in vivo. Nature (London), 209: 988–989.

    Google Scholar 

  • Bell, C. W. 1962. Calcium movement and deposition in the stem of the bean plant. Ph.D. Thesis. Washington State University, Pullman, Washington.

    Google Scholar 

  • Bell, C. W., and O. Biddulph. 1963. Translocation of calcium: Exchange versus mass flow. Plant Physiol., 38: 610–614.

    CAS  PubMed  Google Scholar 

  • Bennet-Clark, T. A. 1956. Salt accumulation and the mode of action of auxin: A preliminary hypothesis. In The Chemistry and Mode of Action of Plant Growth Substances. Wain, R. L., and Wightman, F., eds. London, Butterworths, pp. 284–291.

    Google Scholar 

  • Biddulph, O., F. S. Nakayama, and R. Cory. 1961. Transpiration stream and ascension of calcium. Plant Physiol., 36: 429–436.

    CAS  PubMed  Google Scholar 

  • Biebl, R. 1940. Weitere Untersuchungen über die Wirkung der α-Strahlen auf die Pflanzenzelle. Protoplasma, 35: 187–236.

    Google Scholar 

  • Bollard, E. G., and G. W. Butler. 1966. Mineral nutrition of plants. Ann. Rev. Plant Physiol., 17: 77–112.

    CAS  Google Scholar 

  • Brandenberger, E., and H. R. Schinz. 1944. X-ray investigations of calcification in plants. Ber. Schweiz. Bot. Ges., 54: 255–266.

    CAS  Google Scholar 

  • Brierley, G., E. Murer, E. Bachmann, and D. E. Green. 1963. Studies on ion transport. II. The accumulation of inorganic phosphate and magnesium ions by heart mitochondria. J. Biol. Chem., 238: 3482–3489.

    CAS  PubMed  Google Scholar 

  • Brouwer, R. 1954. The regulating influence of transpiration and suction tension on the water and salt uptake by the roots of intact Vicia faba plants. Acta Bot. Neer., 3: 264–312.

    Google Scholar 

  • Brumagen, D. M., and A. J. Hiatt. 1966. The relationship of oxalic acid to the translocation and utilization of calcium in Nicotiana tabacum. Plant and Soil, 24: 239–249.

    CAS  Google Scholar 

  • Brunzema, D. 1928. Die Entwickelung der Kalziumoxalatzellen mit besonderer Berücksichtigung der offizineilen Pflanzen. Arch. Pharm. (Weinheim), 266: 86.

    CAS  Google Scholar 

  • Bukovac, M. J., and S. H. Wittwer. 1957. Absorption and mobility of foliar applied nutrients. Plant Physiol., 32: 428–435.

    CAS  PubMed  Google Scholar 

  • Carlier, A., and K. Büffel. 1955. Polysaccharide changes in the cell walls of water absorbing potato tuber tissue in relation to auxin action. Acta Bot. Neer., 4: 551–564.

    Google Scholar 

  • Chartschenko, W. 1933. Verschiedene Typen des mechaniscshen Gewebes und der kristallinischen Ausbildungen als systematische Merkmale der Gattung Allium. Beih. Bot. Zbl., 50 (2): 183–206.

    Google Scholar 

  • Chave, K. E. 1952. A solid solution between calcite and dolomite. I. Geol., 60: 190–192.

    CAS  Google Scholar 

  • Chave, K. E. 1954. Aspects of the biogeochemistry of magnesium. I. Calcareous marine organisms. I. Geol., 62: 266–283.

    CAS  Google Scholar 

  • Clarkson, D. T. 1965. Calcium uptake by calcicole and calcifuge species in the genus Agrostis L. J. Ecol., 53: 427–435.

    Google Scholar 

  • Cleland, R. 1960. Effect of auxin upon loss of calcium from cell walls. Plant Physiol., 35: 581–584.

    CAS  PubMed  Google Scholar 

  • Cocco, G., and C. Sabelli. 1962. Affinamento della struttura della whewellite con elaboratore elettronico. Atti Soc. Toscana Sci. Nat. (Pisa). Proc. Verbali Mem./Ser. A., 69: 289–298.

    CAS  Google Scholar 

  • Conard, H. S. 1905. The waterlilies. A monograph of the genus Nymphaea. Washington, Carnegie Institution of Washington.

    Google Scholar 

  • Curtis, L. C. 1943. Deleterious effects of guttated fluids on foliage. Amer. J. Bot., 30: 778–781.

    Google Scholar 

  • Curtis, O. F. 1935. The Translocation of Solutes in Plants: A Critical Consideration of Evidence Bearing Upon Solute Movement. New York, McGraw-Hill Book Company.

    Google Scholar 

  • Czapek, F. 1921. Biochemie der Pflanzen. Jena, Gustav Fisher.

    Google Scholar 

  • Dalbro, S. 1955. Leaching of apple foliage by rain. Proc. 14th Int. Congr. Hort. Scheveningen, Holland, 1: 770–778.

    CAS  Google Scholar 

  • Dangeard, P. A. C. 1947. Cytologie Végétale et Cytologie Générale. Paris, Lechevalier.

    Google Scholar 

  • De Bary, A. 1958. Untersuchungen über die Familie der Conjugaten. Leipzig, 91 pp.

    Google Scholar 

  • Dormer, K. J. 1961. The crystals in the ovaries of certain Compositae. Ann. Bot., 25: 141–154.

    Google Scholar 

  • Duncan, R. E. 1959. Orchids and cytology. In The Orchids. Withner, C. L., ed. New York, The Ronald Press Company, pp. 189–260.

    Google Scholar 

  • Ebert, F. 1909. Kieselkörper bei Ginkgo, Drusen in der Fruchtepidermis von Nelumbo. Beit. 2. Kennt. Seltener Manna-Sorten. Diss. Zurich. Cited by Netolitzky, 1929.

    Google Scholar 

  • Elenken, A. A., and A. N. Danilow. 1916. Recherches cytologiques sur les cristaux et les grains de sécrétion dans les cellules de Symploca muscorum (AP) Gom et quelques autres Cyanophycées. Bull. Jard. Bot. Pierre le Grand, 16; see also Arch. Protistenk., 47:319. (1924) Abstract.

    Google Scholar 

  • Engel, H. 1939. Das Verhalten der Blätter bei Benetzung mit Wasser. Jahrb. Wiss. Bot., 88: 816–861.

    Google Scholar 

  • Ferrell, W. K., and F. D. Johnson. 1956. Mobility of calcium-45 after injection into western white pine. Science, 124: 364–365.

    CAS  PubMed  Google Scholar 

  • Fischer, A. 1884. Über die Vorkommen von Gypskrystallen bei Desmidiaceen. Jahrb. Wiss. Bot., 14: 133.

    Google Scholar 

  • Foster, A. S. 1956a. Plant idioblasts: Remarkable examples of cell specialization. Protoplasma, 46: 184–193.

    Google Scholar 

  • Foster, A. S. 1956b. Practical Plant Anatomy. New York, D. Van Nostrand Co., Inc.

    Google Scholar 

  • Foster, J. W., L. E. McDaniel, H. B. Woodruff, and J. L. Stokes. 1945. Microbiological aspects of penicillin. V. Conidiospore formation in submerged cultures of Penicillium notatum. J. Bact., 50: 365–368.

    Google Scholar 

  • Frey, A. 1926. Etude sur les vacuoles ä cristaux des Closteres. Rev. Gen. Bot., 38: 273–286.

    Google Scholar 

  • Frey, A. 1927. Calciumoxalat-Monohydrat und Trihydrat. In Linsbauer, K., ed. Handbuch der Pflanzenanatomie. Berlin, Gebrüder Borntraeger, Vol. 3, pp. 81–118.

    Google Scholar 

  • Frey-Wyssling, A. 1930. Vergleich zwischen der Auscheidung von Kieselsäure und Kalziumsalzen in der Pflanze. Ber. Deut. Bot. Ges., 48: 184–191.

    CAS  Google Scholar 

  • Frey-Wyssling, A. 1935. Die Stoffausscheidung der höheren Pflanzen. Berlin, Springer-Verlag.

    Google Scholar 

  • Friesner, R. C. 1940. An observation of the effectiveness of root pressure in the ascent of sap. Butler. Univ. Bot. Stud., 4: 226–227.

    Google Scholar 

  • Fritsch, F. E. 1935. Structure and Reproduction of the Algae. Cambridge University Press, Vol. 2.

    Google Scholar 

  • Gilbert, S. G., C. B. Shear, and C. M. Gropp. 1951. The effects of the form of nitrogen and the amount of base supply on the organic acids of tung leaves. Plant Physiol., 26: 750–756.

    CAS  PubMed  Google Scholar 

  • Ginzbfrg, B. Z. 1961. Evidence for a protein gel structure cross-linked by metal cations in the intercellular cement of plant tissue. J. Exp. Bot., 12: 85–107.

    Google Scholar 

  • Haas, P., T. G. Hill, and W. K. H. Karstens. 1935. The metabolism of calcareous algae. II. The seasonal variation in certain metabolic products of Corallina squamata Ellis. Ann. Bot., 49: 609–619.

    CAS  Google Scholar 

  • Haberlandt, G. 1914. Physiological Plant Anatomy. London, MacMillan & Co., Ltd.

    Google Scholar 

  • Hammarsten, G. 1939. On calcium oxalate and its solubility in the presence of inorganic salts with special reference to the occurrence of oxaluria. C. R. Trav. Lab. Carlsberg, 17: 11.

    Google Scholar 

  • Heath, O. V. S., and J. E. Clark. 1956. Chelating agents as plant growth substances. Nature (London), 177: 1118–1121.

    CAS  Google Scholar 

  • Hewitt, E. J. 1963. Essential nutrient elements for plants. Plant Physiol., 3: 155–172.

    Google Scholar 

  • Hodges, T. K., and J. B. Hanson. 1965. Calcium accumulation by maize mitochondria. Plant Physiol., 40: 101–109.

    CAS  PubMed  Google Scholar 

  • Honegger, R. 1952. The polyhydrates of calcium oxalate. Vierteljahresschr. Naturforsch. Ges. Zurich, 97: 44.

    Google Scholar 

  • Howe, M. A. 1932. The geologic importance of the lime-secreting algae. U.S. Geol. Surv. Profess. Papers, 170E: 57–65.

    Google Scholar 

  • Hurelpy, G. 1942. Sur les vacuoles des cellules Ä raphides. C. R. Soc. Biol. (Paris), 215: 31–33.

    Google Scholar 

  • Hylmö, B. 1953. Transpiration and ion absorption. Physiol. Plantarum, 6: 333–405.

    Google Scholar 

  • Ingham, G. 1950. Effect of materials absorbed from the atmosphere in maintaining soil fertility. Soil Sci., 70: 205–212.

    CAS  Google Scholar 

  • Ivanoff, S. S. 1938. Onion “blight.” Texas Agr. Exp. Sta. 51st Ann. Rep., 260–261.

    Google Scholar 

  • Ivanoff, S. S. 1941. Chemical deposits on foliage of citrus and other plants and their possible relation to chlorosis and yield. Texas Agr. Exp. Sta. 54th Ann. Rep., 181–182.

    Google Scholar 

  • Ivanoff, S. S. 1963. Guttation injuries of plants. Bot. Rev., 29: 202–229.

    CAS  Google Scholar 

  • Jacard, P., and A. Frey. 1928. Kristallhabitus und Ausbildungsformer des Ca-oxalats als Artmerkmal. Ein Beitrag zur systematischen Anatomie der Gattung Allium. Vierteljahresschr. Naturforsch. Ges. Zurich, 73: 127.

    Google Scholar 

  • Jahn, E. 1928. Myxomycetenstudien. 12. Das System der Myxomyceten. Ber. Deut. Bot. Ges., 46: 8–17.

    Google Scholar 

  • James, D. B. 1962. Factors affecting the growth of Molinia caerulea on a calcareous soil. J. Ecol., 50: 521–527.

    CAS  Google Scholar 

  • Jeffries, R. L., and A. J. Willis. 1964. Studies on the calcicole-calcifuge habit. I. Methods of analysis of soil and plant tissues and some results of investigations on four species. J. Ecol., 52: 121–138.

    Google Scholar 

  • Johnson, J. J. 1961. Limestone-building algae and algal limestones. Golden, Colo., Colorado School of Mines, Department of Publications.

    Google Scholar 

  • Jovet-Ast, S. 1942. Recherches sur la Anonacees d’Indochine. Mem. Mus. Nation. D’Hist. Nat. (Paris), 16: 3.

    Google Scholar 

  • Joy, K. W. 1964. Accumulation of oxalate in tissues of sugar beet, and the effect of nitrogen supply. Ann. Bot., 28: 689–701.

    CAS  Google Scholar 

  • Katz, R., and M. R. Querry. 1965. Calcium content of wheat kernel sections by critical microradiography. Cereal Chem., 42: 187–198.

    CAS  Google Scholar 

  • Kessler, B., Z. W. Moscicki, and R. Bak. 1961. The effects of decapitation and growth regulators on the movement of calcium in apricot trees. In Plant Growth Regulation. Kline, R. M., ed. Ames, la., Iowa State University Press.

    Google Scholar 

  • Kitchen, J. W., and E. E. Burns. 1965. The effect of maturity on the oxalate content of spinach (Spinacea oleracea L.). Food Sci., 30: 589–593.

    CAS  Google Scholar 

  • Kitchen, J. W., and B. A. Perry. 1964. Calcium oxalate content of spinach (Spinacea oleracea L.). Proc. Amer. Soc. Hort. Sci., 84: 441–445.

    CAS  Google Scholar 

  • Klasens, H. A., W. G. Perdok, and P. Z. Terpstra. 1937. Crystallography of strontium oxalate. Z. Krist., 96: 227.

    CAS  Google Scholar 

  • Kohl, F. G. 1889. Anatomisch-physiologische Untersuchung der Kalksalze und Kieselsäure in den Pflanzen, Marburg.

    Google Scholar 

  • Kopetzky-Rechtperg, O. 1949. Zellbau und Zelleinschlüsse bei Conjugaten, besonders Des- midiales. Protoplasma, 39: 106–112.

    Google Scholar 

  • Koster, J. T. 1939. Notes on Javanese Calcicole Cyanophyceae. Blumea (Leiden), 3: 243–247.

    Google Scholar 

  • Kreusch, W. 1933. Über Entwicklungsgeschichte und Vorkommen des Kalziumoxalates in Solanaceen. Beih. Bot. ZbL, 50: 410–431.

    Google Scholar 

  • Küster, E. 1942. Beiträge zur Kenntnis der Rosanoff’schen Kristalle und verwandter Gebilde. Flora, 136: 101–116.

    Google Scholar 

  • Küster, E. 1956. Die Pflanzenzelle. Höfler, K., and G. Küster-Winkelmann, Eds. Jena, Gustav Fischer.

    Google Scholar 

  • Laties, G. 1959. Active transport of salt into plant tissue. Ann. Rev. Plant Physiol., 10: 87–112.

    CAS  Google Scholar 

  • Läuchli, A. 1967. Nachweis von Calcium-Strontiumablagerungen im Fruchtstiel von Visum sativum mit der Röntgen-Mikrosonde. Planta, 73: 221–227.

    Google Scholar 

  • Läuchli, A., and H. Schwander. 1966. X-ray microanalyzer study on the localization of minerals in native plant tissue sections. Experientia, 22: 503–505.

    Google Scholar 

  • Leblond, M. E. 1928. Formation des vacuoles accessoires chez le Closterium lunula Nitzch. C. R. Soc, Biol. (Paris), 186:1, 311–1, 314.

    Google Scholar 

  • Lefevre, M., and P. Bourrelly. 1938. Sur la valeur systématique des productions verruqueuses de la membrane chez les Closterium. Bull. Soc. Bot. France, 85: 686–690.

    Google Scholar 

  • Lehninger, A. L., C. S. Rossi, and J. W. Greenawalt. 1963. Respiration-dependent accumulation of inorganic phosphate and Ca++ by rat liver mitochondria. Biochem. Biophys. Res. Commun., 10: 444–448.

    CAS  PubMed  Google Scholar 

  • Lepeschkin, W. W. 1923. Über aktive und passive Wasserdrüsen und Wasserspalten. Ber. Deut. Bot. Ges., 41: 298–300.

    Google Scholar 

  • Lewin, J. C. 1962. Calcification. In Physiology and Biochemistry of Algae. Lewin, R. A., ed. New York, Academic Press, Inc.

    Google Scholar 

  • Lowenstam, H. A. 1954. Factors affecting the aragonite-calcite ratios in carbonate-secreting marine organisms. J. Geol., 62: 284–322.

    CAS  Google Scholar 

  • Lowenstam, H. A. 1955. Aragonite needles secreted by algae and some sedimentary implications. J. Sediment. Petrol., 25: 270–272.

    CAS  Google Scholar 

  • Malpighi, M. 1687. Opera Omnia.

    Google Scholar 

  • Mandels, M., and E. T. Reese. 1957. Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J. Bact., 73: 269–278.

    CAS  PubMed  Google Scholar 

  • Mangenot, G. 1932. Sur le pigment et le calcaire chez Fuligo septica Gmel. C. R. Soc. Biol. (Paris), 111: 936.

    Google Scholar 

  • Mangenot, G. 1934. Recherches cytologiques sur les plasmodes de quelques Myxomycètes. Rev. Cytol., 1: 19–67.

    Google Scholar 

  • Mann, C. E. T., and T. Wallace. 1925. The effect of leaching with cold water on the foliage of apple. J. Pomol. Hort. Sci., 4: 146–161.

    Google Scholar 

  • Marinos, N. G. 1962. Studies on submicroscopic aspects of mineral deficiency. I. Calcium deficiency in the shoot apex of barley. Amer. J. Bot., 49: 834–841.

    CAS  Google Scholar 

  • Marloth, R. 1887. Zur Bedeutung der Salz abscheidenden Drüsen der Tamariscineen. Ber. Deut. Bot. Ges., 5: 319–324.

    Google Scholar 

  • Mazia, D. 1938. The binding of Ca, Sr and Ba by Elodea protoplasm. J. Cell Comp. Physiol., 11: 193–203.

    CAS  Google Scholar 

  • McLean, F. C. 1958. The ultrastructure and function of bone. Science, 127: 451–456.

    CAS  PubMed  Google Scholar 

  • Mecklenberg, R. A., and H. B. Tukey, Jr. 1964. Influence of foliar leaching on root uptake and translocation of calcium-45 to the stems and foliage of Phaseolus vulgaris. Plant Physiol., 39: 533–536.

    Google Scholar 

  • Metcalfe, C. R., and L. Chalk. 1950. Anatomy of the Dicotyledons. Oxford, Clarendon Press, Vol. 1, 2.

    Google Scholar 

  • Meyer, A. 1920. Morphologische und physiologische Analyse der Zelle der Pflanzen und Tiere. Teil I, Jena, Gustav Fisher.

    Google Scholar 

  • Molisch, H. 1881. Über die Ablagerung von kohlensaurem Kalk in Stämme dikotyler Holzgewächse. Sitz. ber. Akad. Wiss. Wien, Math-naturw., 84: 7.

    Google Scholar 

  • Molisch, H. 1926. Pflanzenbiologie in Japan auf Grundeigener Beobachtungen. Jena.

    Google Scholar 

  • Mollenhauer, H. H., and D. A. Larson. 1966. Developmental changes in raphide-forming cells of Vanilla planifolia and Monstera deliciosa. J. Ultrastruct. Res. 16: 55–70.

    CAS  PubMed  Google Scholar 

  • Müller, W. 1923. Über die Abhängigkeit der Kalkoxalatbildung in der Pflanze von den Ernährungsbedingungen. Beih. Bot. Zbl., 39: 321–351.

    Google Scholar 

  • Nadson, G., and B. Rochline-Gleichgerwicht. 1928. Apparition des cristaux d’oxalate de calcium dans les cellules végétales sous l’influence de la radiation ultra-violette. C. R. Soc. Biol. (Paris), 98: 363.

    CAS  Google Scholar 

  • Nägeli, C. 1863. Sphaerokrystalle in Acetabularia. Bot. Mitteil. v. Nägeli, Vol. 1.

    Google Scholar 

  • Netolitzky, F. 1929. Die Kieselkörper: Die Kalksalze als Zellinhaltskörper. In Handbuch der Pflanzenanatomie. Linsbauer, K., ed. Berlin, Gebrüder Borntraegger, Vol. 3, pp. 1–80.

    Google Scholar 

  • Niethammer, A. 1931. Mikroscopie und Mikrochemie einiger Kalkoxalatausscheidungen in der Pflanzenzelle. Planta Med., 12: 53–59.

    Google Scholar 

  • Nilsson, H. 1928. Om rafidcellerna i boroten hos Veratrum album och deras utveckling. Farm. Revy Stockholm, p. 5.

    Google Scholar 

  • O’Kelley, J. C., and W. R. Herndon. 1959. Effect of strontium replacement for calcium on production of motile cells in Protosiphon. Science, 130: 718.

    PubMed  Google Scholar 

  • Olsen, C. 1939. Absorption of calcium and formation of oxalic acid in higher green plants. C. R. Lab. Carlsberg. Sér. chim., 23: 101–124.

    CAS  Google Scholar 

  • Ordin, L., R. Cleland, and J. Bonner. 1955. Influence of auxin on cell-wall metabolism. Proc. Nat. Acad. Sci. U.S.A., 41: 1023–1029.

    CAS  Google Scholar 

  • Ordin, L., R. Cleland, and J. Bonner. 1957. Methyl esterification of cell wall constituents under the influence of auxin. Plant Physiol., 32: 216–220.

    CAS  PubMed  Google Scholar 

  • Parry, D. W., and F. Smithson. 1958. Techniques for studying opaline silica in grass leaves. Ann. Bot., 22: 543–549.

    Google Scholar 

  • Parry, D. W., and F. Smithson. 1964. Types of opaline silica depositions in the leaves of British grasses. Ann. Bot., 28: 169–185.

    Google Scholar 

  • Paupardin, C. 1964. Recherches préliminaires sur le comportement de l’oxalate de calcium dans des tissues végétaux culturés in vitro. Rev. Cytol. Biol. Végétales, 27: 253–257.

    Google Scholar 

  • Pavilinova, E. 1926. Physiological significance of guttation. Bull. Inst. Rech. Biol. Sta. Biol. Univ. Perm, 4: 471–478.

    Google Scholar 

  • Penzig, O. 1883. Sull’esistenza di apparecchi illuminatori nell’interno d’alcune piante. Atti. Soc. Nat. Modena, 3: 1

    Google Scholar 

  • Perrin, A. 1967. Valeur trophique du liquide de guttation: constituants organique et minéraux important. Ann. Sci. Nat. Bot. Ser. 12, 8: 357–368.

    Google Scholar 

  • Pfeffer, W. 1872. Untersuchungen über die Proteinkörner und die Bedeutung des Asparagins beim Keimen der Samen. Jahrb. Wiss. Bot., 8: 427.

    Google Scholar 

  • Pfeiffer, H. 1926. Über die Wasserstoflionenkonzentration (H’) als Determinationsfaktor physiologischer Gewebegeschehen in der sekundären Rinde der Pflanzen. New Phytologist, 24: 65–98.

    Google Scholar 

  • Philipsborn, H. Von. 1952. Über Calciumoxalat in Pflanzenzellen. Protoplasma, 41: 415–424.

    Google Scholar 

  • Pireyre, N. 1953. Étude préliminaire sur la calcification et la décalcification des cystolithes. C. R. Soc. Biol. (Paris), 236: 1595–1596.

    CAS  Google Scholar 

  • Pobeguin, T. 1940. Sur la formation de tartrate de calcium dans le mucilage des tiges et des feuilles de Zebrina pendula, Schnizi. Bull. Soc. Bot. France, 87: 363.

    Google Scholar 

  • Pobeguin, T. 1943. Les oxalates de calcium chez quelques Angiospermes: Étude physico-chimique-formation-destin. Ann. Sei. Nat. Bot., Ser. 11, 4: 1–93.

    Google Scholar 

  • Pobeguin, T. 1951. Précipitation du carbonate de calcium chez quelques végétaux. Existence in vivo et in vitro du calcaire amorphe. Ann. Sei. Nat. Bot., Ser. 11, 12: 219–225.

    Google Scholar 

  • Pobeguin, T. 1954a. Contribution a l’étude des carbonates de calcium. Précipitation du calcaire par les végétaux. Comparaison avec le monde animal. Ann. Sei. Nat. Bot., Ser. 11, 15: 29–109.

    Google Scholar 

  • Pobeguin, T. 1954b. Microstructure d’une algue calcaire: Dactylopora (Dasycladacée tertiaire): Remarques sur les organismes aragonitiques et sur leur fossilization. Ann. Sci. Bot., 15: 325–336.

    Google Scholar 

  • Prankerd, T. L. 1920. Statocytes of the wheat haulm. Bot. Gaz., 70: 148–152.

    Google Scholar 

  • Prát, S. 1929. Biologische Reaktionen auf die Dichte der Gallerten. Kolloid Z., 47: 36–38.

    Google Scholar 

  • Prát, S., and J. Hámácková. 1946. The analysis of calcareous marine algae. Studia Bot. Cechoslovaca (Prague), 7: 112–126.

    Google Scholar 

  • Rao, J. S., and D. D. Sundararaj. 1951. Stinging hairs in Tragia cannabina L. f. J. Indian. Bot. Soc., 30: 88–91.

    Google Scholar 

  • Rasmussen, G. K., and P. F. Smith. 1961. Effects of calcium, potassium and magnesium on oxalic, malic and citric acid content of Valencia orange leaf tissue. Plant Physiol., 36: 99–101.

    CAS  PubMed  Google Scholar 

  • Reuther, W., and P. F. Smith. 1954. Leaf analysis in citrus. In Fruit Nutrition. Childers, N. F., ed. New Jersey, Somerset Press, pp. 254–294.

    Google Scholar 

  • Revelle, R., and R. Fairbridge. 1957. Carbonates and carbon dioxide. In Treatise on Marine Ecology and Paleoecology. Hedgepeth, J. W., ed. Geol. Soc. Amer. Mem., Vol. 1, 67: 239–296.

    Google Scholar 

  • Robyns, W. 1928. L’origine et les constituants protoplasmatiques des cellules à raphides du Hyacinthus orientalis. La Cellule, 38: 177–198.

    Google Scholar 

  • Rorison, I. H. 1960. Some experimental aspects of the calcicole-calcifuge problem. I. The effects of competition and mineral nutrition upon seedling growth in the field. J. Ecol., 48: 585–599.

    Google Scholar 

  • Rosanoff, S. 1865. Über die Krystalldrusen im Marke von Kerria japonica D.C. und Ricinus communis. Bot. Z., 23: 329–330.

    Google Scholar 

  • Russell, R. S., and V. M. Shorrocks. 1959. The relationship between transpiration and absorption of inorganic ions by intact plants. J. Exp. Bot., 10: 301–316.

    Google Scholar 

  • Ruttner, F. 1953. Fundamentals of Limnology. Trans, by Frey, D. G., and F. E. J. Fry. Toronto, University of Toronto Press.

    Google Scholar 

  • Sachs, J. 1882. Textbook of Botany. Vines, S. R., ed. Oxford, Clarendon Press.

    Google Scholar 

  • Saussure, T. Dq. 1804. Recherches Chimique Sur la Végétation, Paris, Vue Nyon, pp. 264–265.

    Google Scholar 

  • Schneider, A. 1901. The probable function of calcium oxalate crystals in plants. Bot. Gaz., 32: 142–144.

    Google Scholar 

  • Schürhoff, P. 1908. Ozellen und Lichtkondensoren bei einigen Peperomien. Beih. Bot. Zbl., 23: 14–26.

    Google Scholar 

  • Scott, F. M. 1941. Distribution of calcium oxalate crystals in Ricinus communis in relation to tissue differentiation and presence of other ergastic substances. Bot. Gaz., 103: 225–246.

    CAS  Google Scholar 

  • Smith, E. L. 1923. The histology of certain orchids with reference to mucilage secretion and crystal formation. Bull. Torrey Bot. Club, 50: 1–16.

    CAS  Google Scholar 

  • Solereder, H. 1908. Systematic anatomy of the dicotyledons. Trans, by Boodle and Fritsch. Oxford, Clarendon Press.

    Google Scholar 

  • Sorokin, H., and A. L. Sommer. 1940. Effects of calcium deficiency upon the roots of Pisum sativum. Amer. J. Bot., 27: 308–318.

    CAS  Google Scholar 

  • Stahl, E. 1888. Pflanzen und Schnecken. Z. Naturwiss. Med., 22: 105.

    Google Scholar 

  • Stahl, E. 1920. Zur Physiologie und Biologie der Exkrete. Flora, 113: 1–132.

    Google Scholar 

  • Steinberg, R. A. 1948. Essentiality of calcium in the nutrition of fungi. Science, 107: 423.

    CAS  PubMed  Google Scholar 

  • Steinfink, H., F. G. E. Pautard, and H. J. Arnott. 1965. Crystallography of calcium oxalate in plants. Amer. J. Bot., 52: 613.

    Google Scholar 

  • Sterling, C. 1965. Crystal-structure analysis of Weddellite, CaC2O4-(2 + x)H2O. Acta Cryst., 18: 917–921.

    CAS  Google Scholar 

  • Tagawa, T., and J. Bonner. 1957. Mechanical properties of the A vena coleoptile as related to auxin and to ionic interactions. Plant Physiol., 32: 207–212.

    CAS  PubMed  Google Scholar 

  • Thoms, T. 1877. Eine weisse Ablagerung in Teakholz. Cited in Ber. Deut. Chem. Ges., 10: 2, 234.

    Google Scholar 

  • Thunmark, S. 1926. Bidrag till kannedomen om recenta kalktuffer. Geol. Foren. Stockholm., 48: 541–583.

    Google Scholar 

  • Tischer, J. 1941. Über die Inhaltstoffe der Früchte von Rhus typhina L. IV. Das Vorkommen von Kristallen der primären Calciummalates in der Samenepidermis. Biochem. Z., 308: 225–229.

    CAS  Google Scholar 

  • Tunmann, O. 1913. Pflanzenmikrochemie. Ein Hilfsbuch beim mikrochemischen Studium pflanzlicher Objekte. Berlin, Gebrüder Borntraeger.

    Google Scholar 

  • Uphof, J. C. 1962. Plant hairs. In Handbuch der Pflanzenanatomie. Linsbauer, K., ed. Berlin, Gebrüder Borntraeger, Vol. 4, pp. 49–53.

    Google Scholar 

  • Vinogradov, A. P. 1953. The elementary chemical composition of marine organisms. Memoir No. II. Sears Foundation for Marine Research. Yale University Press.

    Google Scholar 

  • Vlasyuk, P. A., and A. M. Grodzinskii. 1958. Repeated use of calcium by lupine plants. Trans. Referat Zhur. Biol. 52843. Byul. Po. Fiziol. Rast., 2: 38–42.

    Google Scholar 

  • Wakker, J. H. 1888. Studien über die Inhaltskörper der Pflanzenzelle. Jahrb. Wiss. Bot., 19: 422–496.

    Google Scholar 

  • Walker, J. B. 1956. Strontium inhibition of calcium utilization by a green alga. Arch. Biochem., 60: 264–265.

    CAS  PubMed  Google Scholar 

  • Wallner, J. 1935. Zur Kenntnis des unterpflanzlichem Einfluss gebildeten Kalkspates. Planta Med., 23: 51–55.

    Google Scholar 

  • Walter-Levy, L., and J. Laniepce. 1962. Sur la formation des hydrates de l’oxalate de calcium. C. R. Soc. Biol. (Paris), 254: 296–298.

    CAS  Google Scholar 

  • Walter-Levy, L., and R. Strauss. 1962. Sur la répartition des hydrates de l’oxalate de calcium chez les végétaux. C. R. Soc. Biol. (Paris), 254: 1671–1673.

    CAS  Google Scholar 

  • Waygood, E. R., and K. A. Clendenning. 1950. Carbonic anhydrase in green plants. Canad. J. Res., 28: 673–689.

    Google Scholar 

  • Weed, W. H. 1889. Formation of travertine and siliceous sinter by the vegetation of hot springs. Ann. Rep. U.S. Geol. Surv., 9: 617–676.

    Google Scholar 

  • Wehmer, C. 1893. Zur Charakteristik des citronensäuren Kalkes und einige Bemerkungen über die Stellung der Citronensäure im Stoffwechsel. Ber. Deut. Bot. Ges., 11: 333–343.

    Google Scholar 

  • Weinstein, L. H., A. N. Meiss, R. L. Uhler, and E. R. Purvis. 1956. Growth-promoting effects of ethylene-diamine tetra-acetic acid. Nature (London), 178: 1188.

    CAS  Google Scholar 

  • Wilbur, K. M. 1964. Shell formation and regeneration. In Physiology of Mollusca. Wilbur, K. M., and C. M. Yonge, eds. New York, Academic Press, Inc., pp. 243–282.

    Google Scholar 

  • Wilkins, M. B. 1966. Geotropism. Ann. Rev. Plant Physiol., 17: 379–408.

    CAS  Google Scholar 

  • Wilson, J. K. 1923. The nature and reaction of water from hydathodes. N.Y. (Cornell) Agr. Exp. Sta. Mem. 65.

    Google Scholar 

  • Woodhead, N. 1934. Studies in growth and differentiation. V. Histological and metabolic changes during wound healing in Kleinia articulata Haw. Ann. Bot., 48: 467–480.

    CAS  Google Scholar 

  • Zavalishina, S. F. 1939. On spheric crystals in leaves and stems of the pea. Bot. Zhurn. SSSR., 24: 221–224.

    Google Scholar 

  • Zimmerman, A. 1894. Sammel-Referate aus dem Gesammtgebiete der Zellenlehre. Beih. Bot. Zbl., 4: 81–101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Meredith Corporation

About this chapter

Cite this chapter

Arnott, H.J., Pautard, F.G.E. (1970). Calcification in Plants. In: Schraer, H. (eds) Biological Calcification: Cellular and Molecular Aspects. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8485-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8485-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8487-8

  • Online ISBN: 978-1-4684-8485-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics