Skip to main content

Résumé

On acquiert ainsi la conviction qu’il existe des animaux sans epithelium, et qu’une substance animale molle et sans fibres peut s’étendre et se prolonger en filamens libre par une sorte de’afflux, en vertu d’une force inhérente.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, George, the elder. 1947. Micrographia Illustrata, 2nd Ed. London, Brit.

    Google Scholar 

  • Aiguchi, K., and J. L. Smith. 1961. Studies on the nutrition and physiology of Pasteurella pestis. VI. A differential plating medium for the estimation of mutation rate to avirulence. J. Bact., 81: 606–613.

    Google Scholar 

  • Angell, R. W. 1965. The process of chamber formation in the foraminifer Rosalina floridana (Cushman). Ph.D. Thesis, University of Chicago Press.

    Google Scholar 

  • Angell, R. W. 1967a. The test structure and composition of the foraminifer Rosalina floridana. J. Protozool., 14: 299–307.

    Google Scholar 

  • Angell, R. W. 1967b. The process of chamber formation in Rosalina floridana (Cushman). J. Protozool., 14: 566–574.

    Google Scholar 

  • Agricola, G. 1546. De Natura Fossilium. Trans, by Bandy, M. C., and Bandy, J. A. Geol. Soc. Amer. Special Paper 63, 1955.

    Google Scholar 

  • Arnold, Z. M. 1964. Biological observations on the foraminifer Spiroloculina hyalina Schultze. Univ. Calif. Publ. Zool., 72: 1–78.

    Google Scholar 

  • Arnott, H. J. 1966. Studies of calcification in plants. In Calcified Tissues. Fleisch, H., Blackwood, H. J. J., and Owen, M. New York, Springer-Verlag New York Inc.

    Google Scholar 

  • Arnott, H. J., and F. G. E. Pautard. 1967. Osteoblast function and fine structure. Israel J. Med. Sci., 3: 657–670.

    Google Scholar 

  • Arnott, H. J., and F. G. E. Pautard. 1968. The inorganic phase of bone: A re-appraisal. Calcif. Tissue. Res., 2:Suppl.

    Google Scholar 

  • Averintsev, S. 1903. Über die Struktur der Kalkschalen marine Rhizopoden. Zeit. Wiss. Zool., 74: 478–490.

    Google Scholar 

  • Baier, C. R. 1937. Die Bedeutung der Bakterien für den Kalktransport in den Gewässern. Geologie Meere Binnengewäss., 1: 75–105.

    Google Scholar 

  • Bandy, O. L. 1954. Aragonite tests among the Foraminifera. J. Sed. Petrol., 24: 60–61.

    Google Scholar 

  • Bandy, O. L. 1960. General correlation of foraminiferal structure with environment. Int. Geol. Cong. Norden (Copenhagen), 22: 7–19.

    Google Scholar 

  • Bartels, H. A. 1951. Bacterial growth and crystal formation. II. Production of calcium carbonate crystals. J. Dent. Res., 30: 642–644.

    PubMed  CAS  Google Scholar 

  • Bartels, H. A. 1952. Microorganisms in salivary calculus formation. New York Dent. J., 18: 241–248.

    Google Scholar 

  • Bavendamm, W. 1932. Die mikrobiologische Kalkfällung in der tropischen See. Ber. Deutsch. Bot. Ges., 49: 282–287.

    Google Scholar 

  • Be, A. W. H., and D. B. Ericson. 1963. Aspects of calcification in planktonic foraminifera (Sarcodina). Ann. N.Y. Acad. Sci., 109: 65–81.

    PubMed  CAS  Google Scholar 

  • Beavon, J., and W. G. Heatley. 1963. The occurrence of struvite (magnesium ammonium phosphate hexahydrate) in microbial cultures. J. Gen. Microbiol., 31: 167–170.

    PubMed  CAS  Google Scholar 

  • Berkeley, C. 1919. A study of marine bacteria: Straits of Georgia, B. C. Trans. Roy. Soc. Canad., 13: 15–43.

    CAS  Google Scholar 

  • Bernard, F. 1948. Recherches sur le cycle du Coccolithus fragilis Lohm. Flagellé dominant des mers chaudes. J. Cons. Int. Explor. Mer, 15: 177–188.

    Google Scholar 

  • Bernard, F. 1949. Remarques sur la biologie de Coccolithus fragilis Lohm., Flagellé calcaire dominant due plancton méditerranéen. Mem. Soc. Hist. Nat. Afr. N. T., 2: 21–28.

    Google Scholar 

  • Bernheimer, A. W. 1938. A comparative study of the crystalline inclusions of Protozoa. Trans. Amer. Micr. Soc., 57: 336–343.

    CAS  Google Scholar 

  • Bien, S. M. 1967. High hydrostatic pressure effects on Spirostomum ambiguum. Calcif. Tissue. Res., 1: 170–172.

    PubMed  CAS  Google Scholar 

  • Birkenes, E., and Braarud, T. 1952. Phytoplankton in the Oslo Fjord during a “Coccolithus huxleyi-summer.” Avhandling Norske videns. Akad. Mat. Nat., 1: 1–23.

    Google Scholar 

  • Bishop, A. 1927. The cytoplasmic structure of Spirostomum ambiguum (Ehrenberg). Quart. J. Micr. Sci., 71: 147–172.

    Google Scholar 

  • Black, M. 1963. The fine structure of the mineral parts of the Coccolithophoridae. Proc. Linn. Soc. (London), 174: 41–46.

    Google Scholar 

  • Boltges, T. Y. K. 1935. Untersuchungen über die nitrifizierenden Bakterien. Arch. Mikrobiol., 6: 79–138.

    Google Scholar 

  • Bonte, A. 1944. Orbitammina elliptica d’Arch. sp. Foraminifére de grande taille du Bathonien supérieur d’LAisne et des Ardennes. Soc. Géol. France Bull., 12: 320–350.

    Google Scholar 

  • Braarud, T. 1962. Electron microscope studies of coccoliths in oceanic deposits. Nature (London), 193: 1035–1036.

    Google Scholar 

  • Braarud, T., and E. Fagerland. 1946. A coccolithophoride in laboratory culture. Syracosphaera carterae n. sp. Avhandling norske Videns. Akad. Mat. Nat., 2: 1–10.

    Google Scholar 

  • Braarud, T., K. R. Gaardner, J. Markali, and E. Nordli. 1952. Coccolithophorids studied in the electron microscope. I. Observations on Coccolithus huxleyi and Syracosphaera carterae. Nytt. Mag. Bot., 1: 129–134.

    Google Scholar 

  • Braarud, T., and E. Nordli. 1952. Coccoliths of Coccolithus huxleyi seen in the electron microscope. Nature (London), 170: 361–362.

    CAS  Google Scholar 

  • Bramlette, M. N., and F. R. Sullivan. 1964. Coccolithophorids and related nannoplankton of the early Tertiary in California. Micropaleontology, 7: 129–188.

    Google Scholar 

  • Brewer, C. R., et al. 1946. Studies on the nutritional requirements of Bacillus anthracis. Arch. Biochem., 10: 65–75.

    PubMed  CAS  Google Scholar 

  • Buchanan, J. B., and R. H. Hedley. 1960. A contribution to the biology of Astrorhiza limicola (Foraminifera). J. Mar. Biol. Ass. U.K., 39: 549–560.

    Google Scholar 

  • Bulleid, A. 1925. An experimental study of Leptothix buccalis. Brit. Dent. J., 46: 289–300.

    Google Scholar 

  • Bütschli, O. 1908. Untersuchung über organische Kalkgebilde nebst Bemerkungen über organische Kieselgebilde. Gesell. Wiss. (Göttingen) Math. Phys. Kl. Abhandl., 6: 1–177.

    Google Scholar 

  • Cambar, R., M. Leblanc, M. Mercier, and R. Thomas. 1964. Etude en microscope électronique des microstructures superficielles de Protistes fossiles ou vivants. C. R. Acad. Sci. (Paris), 258: 3554–3555.

    Google Scholar 

  • Chapman, F. 1902. The Foraminifera. London, Longmans, Green and Company.

    Google Scholar 

  • Chave, K. E. 1954. Aspects of the biogeochemistry of magnesium. I. Calcareous marine organisms. J. Geol., 62: 266–283.

    CAS  Google Scholar 

  • Clarke, F. W., and W. C. Wheeler. 1922. The inorganic constituents of marine invertebrates. U.S. Geol. Survey, Prof. Paper 124.

    Google Scholar 

  • Curran, H. R., B. C. Brunstetter, and A. T. Meyers. 1943. Spectrochemical analysis of vegetative cells and spores of bacteria. J. Bact., 45: 485–494.

    PubMed  CAS  Google Scholar 

  • Daniel, W. A., and C. F. T. Mattern. 1965. Some observations on the structure of the peristomal membranelle of Spirostomum ambiguum. J. Protozool., 12: 14–27.

    PubMed  CAS  Google Scholar 

  • Deflandre, G. 1934. Sur un foraminifére siliceux fossile des diatomites miocènes de Californie: Silicotextulina diatomitarum n. g. n. sp. C.R. Acad. Sci. (Paris), 198: 1446–1448.

    Google Scholar 

  • Deflandre, G. 1953. In Traité de Zoologie. Grassé, P. P., ed. Paris, Masson et Cie, Vol. 1, p. 143.

    Google Scholar 

  • Deflandre, G., and C. Fert. 1952. Sur la structure fine de quelques coccolithes fossiles observées au microscope électronique: Signification morphôgénetique et application à la systématique. C.R. Acad. Sci. (Paris), 234: 2100–2102.

    Google Scholar 

  • Deflandre, G., and C. Fert. 1953. Etude des Coccolithophoridés des vases actuelles au microscope électronique: Orientation des particules élémentaires de calcaire en rapport avec les notions d’Heliolithae et d’Ortholithae. C.R. Acad. Sci. (Paris), 236: 328–330.

    Google Scholar 

  • De-The, G. 1964. Cytoplasmic microtubules in different animal cells. J. Cell. Biol., 23: 265–275.

    Google Scholar 

  • Dick, A. B. 1928. On needles of rutile in the test of Bathysiphon argenteus. Trans. Edinburgh Geol. Soc., 12: 19–21.

    Google Scholar 

  • Dixon, H. H. 1900. On the structure of coccospheres and the origin of coccoliths. Proc. Roy. Soc. (Biol.), 68: 305–315.

    Google Scholar 

  • Dogeil, V. A. 1929. Die sog. “Konkrementenvakuole” des Infusorien als eine Statocyste betrachtet. Arch. Protistenk., 68: 319–348.

    Google Scholar 

  • Donnay, G. 1956. Crystallography. Carnegie Inst., Yearbook, Wash., 55: 203–206.

    Google Scholar 

  • D’orbigny, A. C. 1826. Tableau méthodique de la classe de Céphalopodes. Ann. Sei. Nat. Paris, 7: 243–314.

    Google Scholar 

  • Drew, G. H. 1911. The action of some denitrifying bacteria in tropical and temperate seas and the bacterial precipitation of calcium carbonate in the sea. J. Mar. Biol. Ass. U.K., 9: 142–155.

    Google Scholar 

  • Drew, G. H. 1912. Report of marine bacteria carried on at Andros Island, Bahamas, British West Indies, in May, 1912. Carnegie Inst., Yearbook, Wash., 11: 136–144.

    Google Scholar 

  • Drew, G. H. 1913. On the precipitation of calcium carbonate in the sea by marine bacteria and on the action of denitrifying bacteria in tropical and temperate seas. J. Mar. Biol. Ass. U. K., 9: 479–524.

    CAS  Google Scholar 

  • Drew, G. H. 1914. On the precipitation of calcium carbonate in the sea by marine bacteria and on the action of denitrifying bacteria in tropical and temperate seas. Carnegie Inst., Yearbook, Wash., 5: 7–45.

    Google Scholar 

  • Drum, R. W. 1963. The cytoplasmic fine structure of the diatom, Nitzschia palea. J. Cell Biol., 18: 429–440.

    PubMed  CAS  Google Scholar 

  • Drum, R. W., and H. S. Pankratz. 1964. Post mitotic fine structure of Gomphonema parvulum. J. Ultrastruct. Res., 10: 217–223.

    PubMed  CAS  Google Scholar 

  • Dujardin, F. 1835. Observations sur les rhizopodes et les infusoires. C.R. Acad. Sci. (Paris), 1: 338–340.

    Google Scholar 

  • Dunbar, C. O., and J. W. Skinner. 1934. Permian and Fusulinidae of Texas. University of Texas Bull. 3701. Austin, University of Texas Press.

    Google Scholar 

  • Ehret, C. F., and G. De Haller. 1963. Origin, development and maturation of organelles and organelle systems of the cell surface in Paramecium. J. Ultrastruct. Res., (Suppl.) 6: 1–42.

    Google Scholar 

  • Ellis, B. F., and A. R. Messina. 1966. Catalogue of index Foraminifera. New York, American Museum of Natural History. See also: Cuviller, J. 1930. Révision de Nummulitique Égyptien. Inst. Égypte. Mém., Cairo, 16: 1–371.

    Google Scholar 

  • Ennever, J. 1960. Intracellular calcification by oral filamentous organisms. J. Periodont., 31: 304–307.

    Google Scholar 

  • Ennever, J. 1963. Microbiologic calcification. Ann. N.Y. Acad. Sci., 109: 4–13.

    CAS  Google Scholar 

  • Ennever, J., and H. Creamer. 1967. Microbiologic calcification: Bone mineral and bacteria. Calcif. Tissue Res., 1: 87–93.

    PubMed  CAS  Google Scholar 

  • Faure-Fremiet, E. 1957. Concrétions minérales intracytoplasmiques chez les ciliés. J. Protozool., 4: 96–109.

    CAS  Google Scholar 

  • Feeney, R. E., and J. A. Garibaldi. 1948. Studies on the mineral nutrition of the subtilin- producing strain of Bacillus subtilis. Arch. Biochem., 17: 447–458.

    PubMed  CAS  Google Scholar 

  • Fincham, A. F. 1966. The natural mineralization of keratins. Ph.D. Thesis, Leeds University.

    Google Scholar 

  • Finley, H. E., C. A. Brown, and W. A. Daniel. 1964. Electron microscopy of the ectoplasm and infraciliature of Spirostomum ambiguum. J. Protozool., 11: 264–280.

    Google Scholar 

  • Foerster, H. F., and J. W. Foster. 1966. Endotrophic calcium, strontium and barium spores of Bacillus megaterium and Bacillus cereus. J. Bact., 91: 1333–1345.

    PubMed  CAS  Google Scholar 

  • Frazier, P. D., and B. O. Fowler. 1967. X-ray diffraction and infrared study of the ‘sulphur granules’ of Actinomyces bovis. J. Gen. Microbiol., 46: 445–450.

    CAS  Google Scholar 

  • Gaardner, K. R. 1962. Electron microscope studies on holococcolithophorids. Nytt. Mag. Bot., 10: 35–51.

    Google Scholar 

  • Gaardner, K. R., J. Markali, and E. Ramsfjell. 1954. Further observations on the coccolithophorid Calciopappus caudatus. Avhandling Norske Videns. Akad. Mat. Nat., 1: 1–10.

    Google Scholar 

  • Gignoux, M., and A. L. Moret. 1920. Le genre Orbitopsella Mun.-Chalm. et ses relations avec Orbitolina. Soc. Géol. France Bull., 20: 129–140.

    Google Scholar 

  • Glaessner, M. F. 1945. Principles of Micropaleontology. Melbourne, Melbourne University Press.

    Google Scholar 

  • Glimcher, M. J. 1960. Molecular biology of mineralized tissues with particular reference to bone. Rev. Modern Physics, 31: 359–393.

    Google Scholar 

  • Gonzales, H. A., and R. F. Sognnaes. 1960. Electron microscopy of dental calculus. Science, 131: 156–158.

    PubMed  CAS  Google Scholar 

  • Greenfield, L. J. 1963. Metabolism and concentration of calcium and magnesium and pre- H cipitation of calcium carbonate by a marine bacterium. Ann. N.Y. Acad. Sci., 109: 23–45.

    CAS  Google Scholar 

  • Gregoire, C. 1957. Topography of the organic components in mother-of-pearl. J. Biophys. Biochem. Cytol., 3: 797–808.

    PubMed  CAS  Google Scholar 

  • Grelet, N. 1952. Le déterminisme de la sporulation de Bacillus megaterium. IV. Constituants minéraux du milieu synthétique necéssaire à la sporulation. Ann. Inst. Pasteur (Paris), 83: 7–79.

    Google Scholar 

  • Gross, W. 1930. De Fische des mittleren Old Red Süd-Liviands. Geol. Paleont. Abhandl. Berlin, 18: 123–156.

    Google Scholar 

  • Grunau, H. R., and H. Studer. 1956. Elektronmicroscopische Untersuchungen an Bianconekalken des Sudtessens. Experientia, 12: 141–143.

    Google Scholar 

  • Gubarev, E. M., and I. L. Bakulenko. 1945. Sostav i svoistava lipidov Cory neb act erium diptheriae (Composition and characteristics of Cory neb act erium diptheriae). Biokhimiya, 10: 285–295.

    CAS  Google Scholar 

  • Halldal, P., and J. Markali. 1954. Morphology and microstructure of coccoliths studied in the electron microscope. Observations on Acanthosphaera robusta and Calyptrosphaera papillifera. Nytt. Mag. Bot., 2: 117–119.

    Google Scholar 

  • Halldal, P., and J. Markali. 1955. Electron microscope studies on coccolithophorids from the Norwegian Sea, the Gulf Stream and the Mediterranean. Avhandling Norske Videns. Akad. Mat. Nat., 1: 1–30.

    Google Scholar 

  • Harper, R. A., and A. S. Posner. 1966. Measurement of noncrystalline calcium phosphate;n bone mineral. Proc. Soc. Exp. Biol. Med. 122: 137–142.

    PubMed  CAS  Google Scholar 

  • Hay, W. W., and K. M. Towe. 1962. Electron-microscope studies of Braarudosphaera bigelowi and some related coccolithophorids. Science, 137: 426–428.

    PubMed  CAS  Google Scholar 

  • Hay, W. W., K. M. Towe, and R. C. Wright. 1963. Ultramicrostructure of some selected foraminiferal tests. Micropaleontology, 9: 171–196.

    Google Scholar 

  • Hedley, R. H. 1958. A contribution to the biology and cytology of Haliphysema (Foraminifera). Proc. Zool. Soc. (London), 130: 567–576.

    Google Scholar 

  • Hedley, R. H., and J. ST. J. Wakefield. 1968. A collagen-like sheath in the arenaceous foraminifera Haliphysema (Protozoa). J. Roy. Micr. Sci., 89: 475–481.

    Google Scholar 

  • Heinzerling, O. 1908. Der Bau der Diatomeenzellen mit besonderer Berücksichtigung der ergastischen Gebilde und der Bezeihung des Baues zur Systematik. Bibl. Botanica. ( Suppl. ), 69.

    Google Scholar 

  • Herodotus. Book 11/12. Trans, into English by Godley, A. D. London, William Heinemann, Ltd., p. 287, 1921.

    Google Scholar 

  • Hewitt, H. B. 1947. Bacterial “calculi.” J. Path. Bact., 59: 657–664.

    PubMed  CAS  Google Scholar 

  • Hodges, T. K., and J. B. Hanson. 1965. Calcium accumulation by maize mitochondria. Plant Physiol., 40: 101–109.

    PubMed  CAS  Google Scholar 

  • Hofker, J. 1953. Arenaceous tests in Foraminifera—chalk or silica. Micropaleontologist, 7: 65–66.

    Google Scholar 

  • Hofker, J. 1954. Chamber arrangement in Foraminifera. Micropaleontologist, 8: 30–32.

    Google Scholar 

  • Honjo, S., and A. G. Fischer. 1964. Fossil coccoliths in limestone examined by electron microscopy. Science, 144: 83–839.

    Google Scholar 

  • Hooke, R. 1664. Micrographia. London, James Allestry.

    Google Scholar 

  • Horner, C. K., and D. Burk. 1934. Magnesium, calcium and iron requirements for growth of Azotobacter in free and fixed nitrogen. J. Agric. Res., 48: 981–995.

    CAS  Google Scholar 

  • Horning, E. S., and G. H. Scott. 1933. Comparative cytochemical studies by micro-incineration of a saprozoic and an holozoic infusorian. J. Morph., 54: 389–397.

    Google Scholar 

  • Humphrey, B. A., and J. M. Vincent. 1962. Calcium in the cell wall of Rhizobium trifolii. J. Gen. Microbiol., 29: 557–561.

    PubMed  CAS  Google Scholar 

  • Humphrey, B. A., and J. M. Vincent. 1965. The effect of calcium nutrition on the production of diffusible antigens by Rhizobium trifolii. J. Gen. Microbiol., 41: 109–118.

    PubMed  CAS  Google Scholar 

  • Hustedt, F. 1930. Die Kieselalgen Deutschiends, Österreichs und der Schweiz. Rabenhorsts Kryptogamen-Flora. Weinheimer, Von J. Cramer, Vol. 7.

    Google Scholar 

  • Huxley, T. H. 1868. On some organisms living at great depth in the North Atlantic Ocean. Quart. J. Micr. Sci., 8: 203–212.

    Google Scholar 

  • Isenberg, H. D., L. S. La Vine, C. Mandwell, and H. Weissfellner. 1965. Qualitative chemical composition of the calcifying organic matrix obtained from cell-free coccolith. Nature (London), 206: 1151–1152.

    Google Scholar 

  • Isenberg, H. D., et al. 1966. A protozoan model of hard tissue formation. Ann. N.Y. Acad. Sci., 136: 155–190.

    Google Scholar 

  • Isenberg, H. D., L. S. Lavine, M. L. Moss, D. Kupferstein, and P. E. Lear. 1963a. Calcification in a marine coccolithophorid. Ann. N.Y. Acad. Sci., 109: 49–64.

    CAS  Google Scholar 

  • Isenberg, H. D., L. S. Lavine, and H. Weissfellner. 1963b. The suppression of mineralization in a coccolithophorid by an inhibitor of carbonic anhydrase. J. Protozool., 10: 477–479.

    CAS  Google Scholar 

  • Isenberg, H. D., L. S. Lavine, M. L. Moss, M. H. Shamos, and H. Weissfellner. 1964. Calcium45 turnover in mineralizing coccolithophorid protozoan. J. Protozool., 11: 531–534.

    PubMed  CAS  Google Scholar 

  • Jahn, B. 1953. Electronenmikroskopische Untersuchungen an Foraminiferenschalen. Zeit. Wiss. Microscop. Technik., 61: 294–297.

    Google Scholar 

  • Johnson, R. C., and N. D. Gary. 1963. Nutrition of Leptospira pomona. III. Calcium, magnesium and potassium requirements. J. Bact., 85: 983–985.

    PubMed  CAS  Google Scholar 

  • Jones, A. R. 1965. Uptake and loss of 45-Ca by Spirostomum ambiguum. J. Protozool. (Suppl.), 12: 4.

    Google Scholar 

  • Jones, A. R. 1966. Uptake of 45-Ca by Spirostomum ambiguum. J. Protozool., 13: 422–428.

    PubMed  CAS  Google Scholar 

  • Jones, A. R. 1967. Calcium and phosphorus accumulation in Spirostomum ambiguum. J. Protozool., 14: 220–225.

    PubMed  CAS  Google Scholar 

  • Kamptner, E. 1956. Das Kalkskelett von Coccolithus huxleyi (Lohm) Kpt. und Gephyrocapsa oceanica Kpt. (Coccolithineae). Arch. Protistenk., 101: 171–202.

    Google Scholar 

  • Keeler, R. F., and M. L. Gray. 1960. Antigenic and related biochemical properties of Listeria monocytogenes. I. Preparation and composition of cell wall material. J. Bact., 80: 683–692.

    PubMed  CAS  Google Scholar 

  • Kellerman, K. F. 1915. Relation of bacteria to depositions of calcium carbonate. Bull. Geol. Soc. Amer., 26: 58.

    Google Scholar 

  • Kellerman, K. F., and N. R. Smith. 1914. Bacterial precipitation of calcium carbonate. J. Wash. Acad. Sci., 4: 400–402.

    CAS  Google Scholar 

  • Kellerman, K. F., and N. R. Smith. 1916. Halophytic and lime precipitating bacteria. Centralbl. Bakt. Abt., I I, 45: 371.

    Google Scholar 

  • Kelly, P. G., P. T. P. Oliver, and F. G. E. Pautard. 1965. The shell of Lingua unguis. In Calcified Tissues. Richelle, L. J., and Dallemagne, M. J., eds. Liège, Université de Liège.

    Google Scholar 

  • Kerr, T. 1952. The scale of primitive living actinopterygians. Proc. Zool. Soc. (London), 122: 55–78.

    Google Scholar 

  • Knayshi, G. 1961. Determination by spodography of the intracellular distribution of mineral matter throughout the life history of Bacillus cereus. J. Bact., 82: 556–563.

    Google Scholar 

  • Knayshi, G. 1965. Further observation on the spodogram of Bacillus cereus endospore. J. Bact., 90: 453–455.

    Google Scholar 

  • Kondo, M., and J. W. Foster. 1967. Chemical and electron microscope studies on fractions prepared from the coats of Bacillus spores. J. Gen. Microbiol., 47: 257–271.

    PubMed  CAS  Google Scholar 

  • Krasheninnikov, V. A. 1960. Microstructure of the wall in Miocene discorbids and rotaliids. Voprosy Mikropaleont. Akad. Nauk. SSSR Otdel. Geol. Geog. Nauk. Geol. Inst. No. 3: 41–43.

    Google Scholar 

  • Krinsley, D. 1960. Trace elements in the tests of planktonic Foraminifera. Micropaleontology, 6: 297–300.

    CAS  Google Scholar 

  • Lacroix, E. 1926. Du choix des coccolithes par les Foraminiféres arénacés pour l’édification de leures tests. Acco. Franc. Avanc. Sci. ( Lyon ), 418–421.

    Google Scholar 

  • Lansing, A. I. 1938. Localization of calcium in Paramecium caudatum. Science, 87: 303–304.

    PubMed  CAS  Google Scholar 

  • Lanz, I. 1940. Über geformte mineralische Einschlüsse der Diatomeenzelle (Beiträge zur Kenntnis der Nauheimer Protophyten V). Ber. Deutsch. Bot. Ges., 58: 502–515.

    CAS  Google Scholar 

  • Lecalvez, Y. 1950. Révision des Foraminiféres Lutétiens du Bassin de Paris. III. Poly- morphinidae, Buliminidae, Nonionidae. Carte Geol. Detaillée France, Mém. 54.

    Google Scholar 

  • Lehninger, A. L. 1965. The Mitochondrion. New York, W. A. Benjamin, pp. 164–165.

    Google Scholar 

  • Lewin, R. A., and T. J. Chow. 1961. La enpreno de strontio en kokolitoforoj. Plant Cell Physiol., 2: 203–208.

    CAS  Google Scholar 

  • Linnaeus (Caroli Linne). 1758. Systema naturae per régna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. G. Engelman.

    Google Scholar 

  • Lipman, C. B. 1924. A critical and experimental study of Drew’s bacterial hypothesis on CaCO8 precipitation in the sea. Carnegie Inst., Yearbook, Wash., 19: 179–191.

    Google Scholar 

  • Lipman, C. B., 1929. Further studies on marine bacteria with special reference to the Drew hypothesis on CaCO3 precipitatio nin the sea. Carnegie Inst., Wash., Publ. 391., 26: 231–248.

    Google Scholar 

  • Loeblich, A. R., and H. Tappan. 1955. Revision of some recent foraminiferal genera. Smithsonian Misc. Collection, 128: 1–37.

    Google Scholar 

  • Loeblich, A. R., and H. Tappan. 1964. Sarcodina, chiefly “Thecamoebians” and Foraminiferida. In Treatise on Invertebrate Paleontology. Moore, R. C., ed. Lawrence, Kansas, University Press of Kansas, Vol. 1, Part C, Protista 2, pp. C164 - C496.

    Google Scholar 

  • Loeblich, A. R., and H. Tappan. 1966. Annotated index and bibliography of the calcareous nanno-plankton. Phycologia, 5: 81–216.

    Google Scholar 

  • Lynts, G. W., and R. M. Pfister. 1967. Surface ultrastructure of some tests of recent Foraminifera from the Dry Tortugas, Florida. J. Protozool., 14: 384–399.

    Google Scholar 

  • Macallum, A. B. 1908. Die Methoden und Ergebnisse der Mikrochemie in der biologischen Forschung. Ergebn. Physiol., 7: 552–652.

    CAS  Google Scholar 

  • Maclennan, R. F., and H. K. Murer. 1933. Localization of mineral ash in the organelles and cytoplasmic components of Paramecium. J. Morph., 44: 421–434.

    Google Scholar 

  • Maclennan, R. F., and H. K. Murer. 1934. Localization of mineral ash in the organelles of Trichonympha, a hypermastigote flagellate from Zootermopsis angusticollis. J. Morph., 56: 231–242.

    Google Scholar 

  • Maier, H. N. 1903. Über den feineren Bau der Wimperapparate der Infusorien. Arch. Protistenk., 2: 73–179.

    Google Scholar 

  • Manton, I., and G. F. Leedale. 1963. Observations on the micro-anatomy of Crystallolithus hyalinus Gaardner and Markali. Arch. Mikrobiol., 47: 115–136.

    Google Scholar 

  • Mast, S. O., and W. L. Doyle. 1935a. Structure, origin and function of cytoplasmic constituents in Amoeba proteus. I. Structure. Arch. Protistenk., 86: 155–180.

    Google Scholar 

  • Mast, S. O., and W. L. Doyle. 1935b. Structure, origin and function of cytoplasmic constituents in Amoeba proteus with special reference to mitochondria and Golgi substance. II. Origin and function based on experimental evidence; effect of centrifuging on Amoeba proteus. Arch. Protistenk., 86: 278–306.

    Google Scholar 

  • Mayall, B. H., and C. F. Robinow. 1957. Observation with the electron microscope on the organization of the cortex of resting and germinating spores of B. megaterium. J. Appl. Bact., 20: 333–341.

    Google Scholar 

  • Mayer, F. K. 1932. Über die Modifikation des Kalzium Karbonate in Schalen und Skeletten rezenter und fossiler Organismen. Chemie der Erde, 7: 346–350.

    CAS  Google Scholar 

  • Monaghan, P. H., and M. A. Lytle. 1956. The origin of calcareous ooliths. J. Sed. Petrol., 26: 111–118.

    CAS  Google Scholar 

  • Moor, H. 1967. Der Feinbau der Mikrotubuli in Hefe nach Gefrierätzung. Protoplasma, 64: 84–103.

    Google Scholar 

  • Moore, R. C., ed. 1964. Treatise on Invertebrate Paleontology. Lawrence, Kansas, University Press of Kansas, Vol. 2, Part C, Protista 2.

    Google Scholar 

  • Moss, M. L. 1963. Addendum to: Be, A. W. H., and D. B. Ericson. Aspects of calcification in planktonic Foraminifera (Sarcodina). Ann. N.Y. Acad. Sci., 109: 80.

    Google Scholar 

  • Moss, M. L. 1964. The phylogeny of mineralized tissues. Int. Rev. Gen. Exp. Zool., 1: 297–331.

    Google Scholar 

  • Murrell, W. G. 1967. The biochemistry of the bacterial endospore. In Advances in Microbial Physiology. Rose, A. H., and Wilkinson, J. F., Eds. New York, Academic Press, Inc., Vol. l, pp. 133–251.

    Google Scholar 

  • Murti, C. R. K. 1960. Preparation of bacterial enzymes by controlled lysis. Biochem. Biophys. Acta, 45: 243–249.

    CAS  Google Scholar 

  • Myers, E. M. 1943. Biology, ecology and morphogenesis of peligic foraminifera. Stanford Univ. Publ. Biol. Sci., 9: 5–30.

    Google Scholar 

  • Nadson, S. 1903. Die Mikroorganismen als geologische Faktoren. I Über die Schwefel- wasserstoffgährung in Weissowo-Salzee und über die Betheiligung der Mikroorganismen bei der Bildung des schwarzen Schlammes (Heilschlammes). Arbeit. Commission Erforsch. Mineral. Slawjansk, St. Petersburg.

    Google Scholar 

  • Nadson, S. 1904. Die Mikroorganismen als geologische Faktoren. I. Über die Schwefelwasserstoffgährung in Weissowo-Salzee und über die Betheiligung der Mikroorganismen bei der Bildung des schwarzen Schlammes (Heilschlammes). Bot. Zbl. (Abstr.), 96: 591–593.

    Google Scholar 

  • Nadson, S. 1928. Beitrag zur Kenntnis der bakteriogenen Kalkablagerungen. Arch. Hydrobiol., 19: 154–164.

    CAS  Google Scholar 

  • Neresheimer, E. R. 1903. Über die Hohe histologischer Differenzierung bei Heterotrichen Ciliaten. Arch. Protistenk., 2: 305–328.

    Google Scholar 

  • Norris, J. R., and H. L. Jensen. 1957. Calcium requirements for Azotobacter. Nature (London), 180: 1493–1494.

    CAS  Google Scholar 

  • Nyholm, K. G. 1957. Orientation and binding power of recent monothalamous Foraminifera in soft sediments. Micropaleontology, 3: 76–78.

    Google Scholar 

  • Oppenheimer, C. H. 1961. Note on the formation of spherical aragonitic bodies in the presence of bacteria from the Bahama Bank. Geochim. Cosmochim. Acta, 23: 295–296.

    CAS  Google Scholar 

  • Ørvig, T. 1967. Histologic studies of ostracoderms, placoderms and fossil elasmobranchs. II. On the dermal skeleton of two late Paleozoic elasmobranchs. Arkiv. for Zool., 19: 1–40.

    Google Scholar 

  • Paasche, E. 1962. Coccolith formation. Nature (London), 193: 1094–1095.

    Google Scholar 

  • Paasche, E. 1962. Coccolith formation. (Error corrected), Nature (London), 194: 1024.

    Google Scholar 

  • Paasche, E. 1963. The adaptation of the carbon-14 method for the measurement of coccolith production in Coccolithus huxleyi. Physiol. Plantarum, 16: 186–200.

    CAS  Google Scholar 

  • Paasche, E. 1964. A tracer study of the inorganic carbon uptake during coccolith formation and photosynthesis in the coccolithophorid Coccolithus huxleyi. Physiol. Plantarum (Suppl.), 3: 1–82.

    Google Scholar 

  • Paasche, E. 1965. The effect of 3-(p-chlorophenyl)-l, 1-dimethylurea (CMU) on photosynthesis and light-dependent coccolith formation in Coccolithus huxleyi. Physiol. Plantarum, 18: 138–145.

    CAS  Google Scholar 

  • Paasche, E. 1966. Action spectrum of coccolith formation. Physiol Plantarum, 19: 770–779.

    CAS  Google Scholar 

  • Parke, M., and I. Adams. 1960. The motile (Crystallolithus hyalinus Gaardner and Markali) and non-motile phase in the life history of Coccolithus pelagicus (Wallich) Schiller. J. Mar. Biol. Ass. U.K., 39: 263–274.

    Google Scholar 

  • Pautard, F. G. E. 1958. Bone salts in unicellular organisms. Biochim. Biophys. Acta, 28: 514–520.

    PubMed  CAS  Google Scholar 

  • Pautard, F. G. E. 1959. Hydroxyapatite as a developmental feature of Spirostomum ambiguum. Biochim. Biophys. Acta, 35: 33–46.

    PubMed  CAS  Google Scholar 

  • Pautard, F. G. E. 1960. Calcification in unicellular organisms. In Calcification in Biological Systems. Sognnaes, R. F., ed. Washington, Amer. Ass. Advance. Sci.

    Google Scholar 

  • Pautard, F. G. E. 1962. The molecular-biologic background to the evolution of bone. Clin. Orthop., 24: 230–244.

    PubMed  CAS  Google Scholar 

  • Pautard, F. G. E. 1963. Mineralization of keratin and its comparison with the enamel matrix. Nature (London), 199: 531–535.

    CAS  Google Scholar 

  • Pautard, F. G. E. 1966. A biomolecular survey of calcification. In Calcified Tissues. Fleish, H., Blackwood, H. J. J., and Owen, M., eds. New York, Springer-Verlag New York, Inc.

    Google Scholar 

  • Pine, L., and J. R. Overman. 1963. Determination of the structure and composition of the “sulphur granules” of Actinomyces bovis. J. Gen. Microbiol., 32: 209–223.

    PubMed  CAS  Google Scholar 

  • Pliny. Book 36/81. Trans, into English by Eicholtz, D. E. London, William Heinemann, Ltd., 1962, p. 63.

    Google Scholar 

  • Policard, A. 1929a. La micro-incineration des cellules et des tissues. Protoplasma (Wien), 7: 464–481.

    Google Scholar 

  • Policard, A. 1929b. Application de la méthode de la micro-incineration a l’étude des vorticelles. Arch. Anat. Micr. Morph. Exp., 25: 445–450.

    Google Scholar 

  • Policard, A. 1942. Twenty years of microincineration. Cytological results. J. Roy. Micr. Soc., 62: 25–35.

    Google Scholar 

  • Pollack, H. 1928. Micrurgical studies in cell physiology. VI. Calcium ions in living protoplasm. J. Gen. Physiol., 11: 539–545.

    PubMed  CAS  Google Scholar 

  • Powell, J. F., and R. E. Strange. 1953. Biochemical changes occurring during the germination of bacterial spores. Biochem. J., 54: 205–209.

    PubMed  CAS  Google Scholar 

  • Powell, J. F., and R. E. Strange. 1956. Biochemical changes occurring during sporulation in Bacillus species. Biochem. J., 63: 661–668.

    PubMed  CAS  Google Scholar 

  • Pringsheim, E. G. 1955. Kleine Mitteilungen liber Flagellaten und Algen. I. Algenortige Chrysophyceen in Reinkultur. Archiv. Mikrobiol., 21: 401–410.

    CAS  Google Scholar 

  • Quinaux, N., and L. J. Richelle. 1967. X-ray diffraction and infrared analysis of bone specific gravity fractions in the growing rat. Israel J. Med. Sci., 3: 677–690.

    CAS  Google Scholar 

  • Randall, J. T. 1957. The fine structure of the protozoan, Spirostomum ambiguum. Symp. Soc. Exp. Biol., 10: 185–198.

    Google Scholar 

  • Raup, D. M. 1965. Crystal orientations in the echinoid apical system. J. Paleontol., 39: 934–951.

    Google Scholar 

  • Reimann, B. E. F. 1964. Deposition of silica inside a diatom cell. Exp. Cell. Res., 34: 605–608.

    PubMed  CAS  Google Scholar 

  • Reimann, B. E. F., J. C. Lewin, and B. E. Volcani. 1965. Studies on the biochemistry and fine structure of silica shell formation in diatoms. I. The structure of the cell wall of Cylindrotheca fusiformis, Reiman and Lewin. J. Cell Biol., 24: 39–55.

    PubMed  CAS  Google Scholar 

  • Rhumbler, L. 1888. Die verschiedenen Cystenbildungen und die Entwicklungsgeschichte der holotrichen Infusoriengattung Colpoda. Zeit. Wiss. Zool., 46: 549–601.

    Google Scholar 

  • Rizzo, A. A., G. R. Martin, D. B. Scott, and S. S. Mergenhagen. 1962. Mineralization of bacteria. Science, 135: 439–441.

    PubMed  CAS  Google Scholar 

  • Rizzo, A. A., D. E. Scott, and H. A. Bladen. 1963. Calcification of oral bacteria. Ann. N.Y. Acad. Sci., 109: 14–22.

    PubMed  CAS  Google Scholar 

  • Rode, L. J., and J. W. Foster. 1966a. Influence of exchangeable ions on the germinability of bacterial spores. J. Bact., 91: 1582–1588.

    CAS  Google Scholar 

  • Rode, L. J., and J. W. Foster. 1966b. Quantitative aspects of exchangeable calcium in spores of Bacillus magaterium. J. Bact., 91: 1589–1593.

    CAS  Google Scholar 

  • Sachs, I. B. 1956. The chemical nature of the cyst membrane of Pelomyxa illinoisensis. Trans. Amer. Micr. Soc., 45: 304–313.

    Google Scholar 

  • Said, R. 1951. Preliminary note on the spectroscopic distribution of elements in the shells of some recent calcareous Foraminifera. Cushman Found. Foram. Res. Contrib., 2: 11–13.

    Google Scholar 

  • Salton, M. R. J., and J. M. Ghuysen. 1960. Acteylhexosamine compounds enzymically re¬lated to Micrococcus lysodeikticus cell walls. III. The structure of di- and tetrasaccharides released from cell walls by lysozyme and Streptomyes F1 enzyme. Biochim. Biophys. Acta, 45: 355–371.

    PubMed  CAS  Google Scholar 

  • Schaeffer, A. A. 1919. Excretion of crystals in ameba. Anat. Ree., 15: 347.

    Google Scholar 

  • Schaudinn, F. 1899. Untersuchungen über den Generationswechsel von Trichosphaerium sieboldii. Sehn. Abhandl. Akad. Wiss. ( Berlin ), 1–93.

    Google Scholar 

  • Schewiakoff, W. 1894. Über die Natur der sogenannten Exkretkörner der Infusorien. Ziet. Wiss. Zool., 58: 32–56.

    Google Scholar 

  • Schmidt, W. J. 1924. Die Bausteine des Tierkörpers in polarisierten Lichte. Bonn, F. Cohen.

    Google Scholar 

  • Schubotz, H. 1905. Beitrage auf Kenntnis der A. blattae [Butschli] und A. proteus (Pali.). Arch. Protistenk., 6: 1–46.

    Google Scholar 

  • Scott, G. H. 1930. Sur la disposition des constituants minéraux du noyaux pendant la mitose. C.R. Acad. Sci. (Paris), 190: 1323–1324.

    Google Scholar 

  • Scott, G. H. 1932. Topographical similarities between materials revealed by ultraviolet light photomicrography of living cells and by micro-incineration. Science, 76: 148–150.

    PubMed  CAS  Google Scholar 

  • Scott, G. H., and E. S. Horning. 1932. The structure of opalinids, as revealed by the technique of micro-incineration. J. Morph., 53: 381–388.

    Google Scholar 

  • Shelanski, M. L., and E. W. Taylor. 1967. Isolation of protein subunit from microtubules. J. Cell Biol., 34: 549–554.

    PubMed  CAS  Google Scholar 

  • Slama, D. C. 1954. Arenaceous tests in the Foraminifera—an experiment. Micropaleontologist, 8: 33–34.

    Google Scholar 

  • Slepecky, R., and J. W. Foster. 1959. Alterations in metal content of spores of Bacillus megaterium and the effect on spore production. J. Bact., 78: 117–123.

    PubMed  CAS  Google Scholar 

  • Smith, N. R. 1926. Report on bacterial examination of “chalky mud” and sea-water from the Bahama Banks. Carnegie Inst., Yearbook, Wash., 23: 67–72.

    Google Scholar 

  • Sorby, H. C. 1861. On the organic origin of the so-called ‘crystalloids’ of the chalk. Ann. Mag. Nat. Hist., 8: 193–200.

    Google Scholar 

  • Strabo. Geography 17/34. Trans, into English by Jones, H. L. London, William Heinemann, Ltd., 1932, p. 95.

    Google Scholar 

  • Sugiyama, H. 1951. Studies on factors affecting the heat resistance of spores of Clostridium botulinium. J. Bact., 62: 81–95.

    PubMed  CAS  Google Scholar 

  • Switzer, G., and A. J. Boucot. 1955. The mineral composition of some microfossils. J. Paleontol., 29: 525–533.

    Google Scholar 

  • Takazoe, I., Y. Kurahashi, and S. Takuma. 1963. Electron microscopy of intracellular miner-alization of oral filamentous microorganisms in vitro. J. Dent. Res., 42: 681–685.

    PubMed  CAS  Google Scholar 

  • Takazoe, I., Y., and T. Nakamura. 1965. The relation between metachromatic granules and intracellular calcification of Bacterionema matruchotii Tokyo. Dent. Col., 6: 29–42.

    Google Scholar 

  • Tarlo, L. B. H. 1964. The origin of bone. In Bone and Tooth. Blackwood, H. J. J., ed. Oxford, Pergamon Press, Inc.

    Google Scholar 

  • Termine, J. D. 1966. Amorphous calcium phosphate: The second mineral of bone. Ph.D. Thesis, Cornell University.

    Google Scholar 

  • Termine, J. D., and A. S. Posner. 1967a. Infra red analysis of rat bone: Age dependency of amorphous and crystalline mineral fractions. Science, 153: 1523–1525.

    Google Scholar 

  • Termine, J. D., and A. S. Posner. 1967b. Amorphous/crystalline interrelationships in bone mineral. Calcif. Tissue. Res., 1: 8–23.

    CAS  Google Scholar 

  • Thomas, R. S. 1964. Ultrastructural localization of mineral matter in bacterial spores by microincineration. J. Cell Biol., 23: 113–133.

    PubMed  CAS  Google Scholar 

  • Tilney, L. G., and K. R. Porter. 1967. Studies on the microtubules in heliozoa. II. The effect of low temperature on these structures in the formation and maintenance of axopodia. J. Cell Biol., 34: 327–344.

    PubMed  CAS  Google Scholar 

  • Tinelli, R. 1955. Étude de la biochemie de la sporulation chez Bacillus megaterium. I. Composition des spores obtenues par carence des différents substrats carbonés. Ann. Inst. Pasteur, (Paris) 88: 212–216.

    CAS  Google Scholar 

  • Todd, R., and P. Blackmon. 1956. Calcite and aragonite in Foraminifera. J. Paleontol., 30: 270–290.

    Google Scholar 

  • Tokuyasu, K., and E. Yamada. 1959. Fine structure of Bacillus subtilis. II. Sporulation progress. J. Biophys. Biochem. Cytol., 5: 129–134.

    PubMed  CAS  Google Scholar 

  • Towe, K. M. 1967a. Echinoderm calcite: Single crystal or polycrystalline aggregate. Science, 157: 1047–1050.

    Google Scholar 

  • Towe, K. M. 1967b. Wall structure and cementation in Halophragmoides canariensis. Cushman Found. Foram. Res. Contrib., 18: 147–151.

    Google Scholar 

  • Towe, K. M., and R. Cifelli. 1967. Wall ultrastructure in the calcareous Foraminifera: Crystallographic aspects and a model for calcification. J. Paleontol., 41: 442–462.

    Google Scholar 

  • Travis, D. F. 1963. Structural features of mineralization from tissues to macromolecular levels of organisation in the decapod Crustacea. Ann. N.Y. Acad Sei., 109: 177–245.

    CAS  Google Scholar 

  • Troelson, J. C. 1955. On the value of aragonite tests in the classification of the Rotaliidea. Cushman Found. Foram. Res. Contrib., 6: 50–51.

    Google Scholar 

  • Vincent, J. M. 1962. Influence of calcium and magnesium on the growth of Rhizobium. J. Gen. Microbiol., 28: 653–663.

    PubMed  CAS  Google Scholar 

  • Vincent, J. M., and J. R. Colburn. 1961. Cytological abnormalities in Rhizobium trifolii due to deficiency of calcium and magnesium. Aust. J. Sci., 23: 269–270.

    CAS  Google Scholar 

  • Vinogradov, A. P. 1953. The elementary chemical composition of marine organisms. Sears Foundation for Marine Research, New Haven, Yale University Press.

    Google Scholar 

  • Vintner, V. 1956. Sporulation of bacilli. III. Transference of calcium to cells and decrease in proteolytic activity in the medium in the process of sporulation of Bacillus megaterium. Cs. Mikrobiol., 1: 145–150.

    Google Scholar 

  • Vintner, V. 1957. The effect of cystine upon spore formation by Bacillus megaterium. J. Appl. Bact., 20: 325–332.

    Google Scholar 

  • Von Stosch, H. A. 1955. Ein morphologischer Phasenwechsel bei einer Coccolithophoride. Naturwissenschaften, 42: 423.

    Google Scholar 

  • Von Stosch, H. A. 1958. Der Geiselapparat einer Coccolithophoride. Naturwissenschaften, 45: 140–141.

    Google Scholar 

  • Wada, K. 1961. Crystal growth of molluscan shells. Bull. Natl. Pearl. Res. Lab., 7: 705–828.

    Google Scholar 

  • Wallich, G. C. 1861. Remarks on some novel phases of organic life, and on the boring powers of minute annelids, at great depth in the sea. Ann. Mag. Nat. Hist., 8: 52–58.

    Google Scholar 

  • Warth, A. D., D. F. Ohye, and W. C. Murrell. 1963. The composition and structure of bacterial spores. J. Cell Biol., 16: 570–592.

    Google Scholar 

  • Wasserman, B. H., I. D. Mandel, and B. M. Levy. 1958. In vitro calcification of dental calculus. J. Periodont., 29: 144–147.

    Google Scholar 

  • Watabe, N. 1965. Studies on shell formation. XI. Crystal-matrix relationships in the inner layer of mollusk shells. J. Ultrastruct. Res., 12: 351–370.

    PubMed  CAS  Google Scholar 

  • Watabe, N. 1967. Crystallographic analysis of the coccolith of Coccolithus huxleyi. Calcif. Tiss. Res., 1: 114–121.

    CAS  Google Scholar 

  • Watabe, N., and K. M. Wilbur. 1966. Effects of temperature on growth, calcification and coccolith form in Coccolithus huxleyi (Coccolithinae). Limnol. Oceanogr., 11: 567–575.

    Google Scholar 

  • West, C. D. 1937. Note on the crystallography of the echinoderm skeleton. J. Paleontol., 11: 458–459.

    Google Scholar 

  • Wetzel, A. 1925. Vergleichende cytologische Untersuchungen an ciliaten. Arch. Protistenk., 51: 209–304.

    Google Scholar 

  • Wilbur, K. M., and N. Watabe. 1963. Experimental studies on calcification in molluscs and the alga Coccolithus huxleyi. Ann. N.Y. Acad. Sci., 109: 82–112.

    PubMed  CAS  Google Scholar 

  • Williamson, W. C. 1858. On the Recent Foraminifera of Great Britain. London, Ray Society Publications.

    Google Scholar 

  • Wood, A. 1949. The structure of the wall of the test in the Foraminifera; its value in classification. Geol. Soc. London Quart. J., 104: 229–255.

    Google Scholar 

  • Wrzesniowski, A. 1870. Beobachtungen über Infusorien aus der Umgebung von Warshau. Zeit. Wiss. Zool., 20: 467–511.

    Google Scholar 

  • Young, I. E., and P. C. Fitz-James. 1962. Chemical and morphological studies of bacterial spore formation. IV. The development of spore refractility. J. Cell Biol., 12: 115–133.

    PubMed  CAS  Google Scholar 

  • Yu, T. C., and R. O. Sinhuber. 1955. Stimulatory effect of calcium on the growth of Lactobacillus fermenti. Proc. Soc. Exp. Biol. Med., 88: 238–240.

    PubMed  CAS  Google Scholar 

  • Zander, H. A., S. P. Hazen, and D. B. Scott. 1960. Mineralization of dental calculus. Proc. Soc. Exp. Biol. Med., 103: 257–260.

    PubMed  CAS  Google Scholar 

  • Zo Bell, C. E. 1946. Marine Microbiology. Waltham, Mass., Chronica Botanica Company.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Meredith Corporation

About this chapter

Cite this chapter

Pautard, F.G.E. (1970). Calcification in Unicellular Organisms. In: Schraer, H. (eds) Biological Calcification: Cellular and Molecular Aspects. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8485-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8485-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8487-8

  • Online ISBN: 978-1-4684-8485-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics