Skip to main content

Lipid Structures and Lipid-Protein Interactions in Thylakoid Membranes

  • Chapter
  • 55 Accesses

Abstract

Biological membranes are essentially lipoprotein structures and, in general, are described in terms of the fluid mosaic model. In this current view of biomembrane structure, the lipid component forms a closed, stable bilayer while in a fluid liquid-crystalline condition. It thereby provides a regulated and controlled internal environment as well as a matrix for the lateral diffusion of membrane proteins. Such a model implies that any enzyme residing in the bilayer must have lipid associated with the protein surface. Most biomembranes contain a large number of integral proteins and clearly the fraction of lipid involved at protein/lipid interfaces will be higher as the protein to lipid ratio of the membrane as a whole increases. Lipid-protein associations occur in all membrane systems and at the molecular level any interactions, whether hydrophobic, steric or electrostatic, must be governed by common principles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Warren, G.B., Houslay, M.D., Metcalfe,_J.C. and Birdsall, N.J.M. (1975) Cholesterol is excluded from the phospholipid annulus surrounding an active calcium transport protein. Nature 255, 684–687

    CAS  Google Scholar 

  2. Cronan, J.E. and Gelmann, E.P. (1975) Physical properties of membranelipids: Biological relevance and regulation. Bacteriol. Rev. 39, 232–256

    CAS  Google Scholar 

  3. Taraschi, T.F., de Kruijff, B., Verkleij,A.J. and van Echteld, C.J.A. (1982) Effect of glycophorin on lipid polymorphism. A 31P NMR study. Biochim. Biophys. Acta 685, 153–161

    Article  CAS  Google Scholar 

  4. Israelachvili, J.N., Marcelja, S. and Horn, R.G. (1980) Physical principles of membrane organisation, Q. Rev. Biophys. 13, 121–200

    Article  CAS  Google Scholar 

  5. Luzzati, V. and Husson, F. (1962) The structure of the liquid-crystalline phases of lipid-water systems. J. Cell Biol. 12, 207–219

    Article  CAS  Google Scholar 

  6. Cullis. P.R. and de Kruíjff, B. (1978) The polymorphic phase behaviour of phosphatidylethanolamines of natural and synthetic origin. A31PNMR study Biochim. Biophys. Acta 513, 31–42

    Article  CAS  Google Scholar 

  7. Cullis, P.R., Verkleij, A.J. and Vernergaert, P.H.J.Th. (1978) Polymorphic phase behaviour of cardiolipin as detected by 31P-NMR and freeze-fracture techniques. Effects of calcium, dibucaine and chlorpromazine. Biochim. Biophys. Acta 513, 11–20

    Article  CAS  Google Scholar 

  8. Wieslander, A. Ulmins, J., Lindblom, G. and Fontel, K. (1978) Water binding and phase structures for different Acholeplasma Laidlawii membrane lipids studied by deuteron nuclear magnetic resonance and X-ray diffraction. Biochim. Biophys. Acta 512, 241–253

    Google Scholar 

  9. Deamer, D.W., Leonard, R., Tardieu, A. and Branton, D. (1970) Lamellar and hexagonal lipid phases visualised by freeze-etching. Biochim. Biophys. Acta 219, 47–60

    Article  CAS  Google Scholar 

  10. Papahadjopoulos, D., Vail, W.J., Pangborn, W.A. and Poste, G. (1976) Studies on membrane fusion. Induction of fusion in pure phospholipid membranes by calcium ions and other divalent metals. Biochim. Biophys. Acta 448, 265–283

    Article  CAS  Google Scholar 

  11. Vail, W.J. and Stollery, J.G. (1979) Phase changes of cardiolipin vesicles mediated by divalent cations. Biochim. Biophys. Acta 551, 74–78

    Article  CAS  Google Scholar 

  12. Sen, A., Williams, W.P., Brain, A.P.R., Dickens, M.J. and Quinn, P.J. (1981) Formation of inverted micelles in dispersions of mixed galactolipids. Nature 293, 488–490

    Article  CAS  Google Scholar 

  13. Verkleij, A.J., Mombers, C., Leunissen-Bijrelt, L. and Ververgaert, P.J.J.Th. (1979) Lipidic intramembranous particles. Nature, 279, 162–163

    Article  CAS  Google Scholar 

  14. Sen, A., Brain, A.P.R., Quinn, P.J. and Williams, W.P. (1982) Formation of inverted lipid micelles in aqueous dispersions of mixed sn-3-galactosyldiacylglycerols induced by heat and ethylene glycol. Biochim. Biophys. Acta 686, 215–224

    Article  CAS  Google Scholar 

  15. Barber, J. (1980) Membrane surface charges and potentials in relation to photosynthesis. Biochim. Biophys. Acta 594, 253–308

    CAS  Google Scholar 

  16. Gounaris, K., Sen, A., Brain, A.P.R., Quinn, P.J. and Williams, W.P. (1983) The formation of non-bilayer structures in total polar lipid extracts of chloroplast membranes. Biochim. Biophys. Acta 728, 129–139

    Article  CAS  Google Scholar 

  17. Gounaris, K., Mannock, D.A., Sen, A., Brain, A.P.R., Williams, W.P. and Quinn, P.J. (1983) Polyunsaturated fatty acyl residues of galactolipids are involved in the control of bilayer/non-bilayer lipid transitions in higher plant chloroplasts. Biochim. Biophys. 732, 229–242

    Article  CAS  Google Scholar 

  18. Gounaris, K., Brain, A.P.R., Quinn, P.J. and Williams, W.P. (1984) Structural reorganisation of chloroplast thylakoid membranes in response to heat-stress. Biochim. Biophys. Acta 766, 198–208

    Article  CAS  Google Scholar 

  19. Crow, L.M. and Crowe, J.H. (1982) Hydration-dependent hexagonal phase lipid in a biological membrane. Arch. Biochem. Biophys. 217, 582–587

    Article  Google Scholar 

  20. van Venetie, R. and Verkleij, A.J. (1982) Possible role of non-bilayer lipids in the structure of mitochondria. A freeze-fracture electron microscopy study. Biochim. Biophys. Acta 692, 397–405

    Article  Google Scholar 

  21. Winget, G.D., Kanner, N. and Racker, E. (1977) Formation of ATP by the adenosine triphosphatase complex from spinach chloroplasts reconstituted together with bacteriorhodopsin. Biochim. Biophys. Acta 460, 490–499

    Article  CAS  Google Scholar 

  22. Pick, U., Gounaris, K., Admon, A. and Barber, J. (1984) Activation of the CF0–CF1 ATP synthease from spinach chloroplasts by chloroplast lipids. Biochim. Biophys. Acta 765, 12–20

    Article  CAS  Google Scholar 

  23. Pick, U., Gounaris, K., Weiss, M. and Barber, J. (1985) Tightly bound sulpholipids in chloroplast CF0–CF1. Biochim. Biophys. Acta 808, 415–420

    Article  CAS  Google Scholar 

  24. Robinson, N.C. (1982) Specificity and binding affinity of phospholipids to the high-affinity cardiolipin sites of beef heart cytochrome c oxidase. Biochemistry. 21, 184–188

    Article  CAS  Google Scholar 

  25. Kagawa, Y., Kandrach, A. and Racker, E. (1973) Partial resolution of the enzymes catalyzing oxidative phosphorylation. Specificity of phospholipids required for energy transfer reactions. J. Biol. Chem. 248, 676–684

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Gounaris, K. (1986). Lipid Structures and Lipid-Protein Interactions in Thylakoid Membranes. In: Papageorgiou, G.C., Barber, J., Papa, S. (eds) Ion Interactions in Energy Transfer Biomembranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8410-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8410-6_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8412-0

  • Online ISBN: 978-1-4684-8410-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics