Skip to main content

Effect of the Surface Potential on Membrane Enzymes and Transport

  • Chapter
Book cover Ion Interactions in Energy Transfer Biomembranes
  • 54 Accesses

Abstract

The surface charge of biological membranes is produced by dissociable groups of membrane constituents, mainly phospholipids and proteins. The surface potential (Ψo) is related to the surface charge density (6) according to the Gouy-Chapman equation which, when simplified for a symmetric electrolyte, is

$${{\varphi }_{o}}=\frac{2RT}{zF}\arcsin h\left[ 6{{\left( 8RT{{\varphi }_{o}}{{\varphi }_{r}}C \right)}^{-\frac{1}{2}}} \right]$$
(1)

where R is the gas constant, T is the absolute temperature, F is the Faraday constant, C denotes the concentration of the electrolyte, and z is its valency, ∈o is the permittivity of the vacuum, and ∈r is the relative permittivity (dielectric constant) of the medium. Because of electric attraction or repulsion, the concentration of ions in the immediate vicinity of the membrane surface (Co) is different from that in the bulk solution (C), as described by the Boltzmann distribution

$${{C}_{o}}={{C}_{\infty }}\exp \left( -zF{{\varphi }_{o}}/RT \right)$$
(2)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Goldstein, Y. Levin, and E. Katchalski, A water-insoluble polyanionic derivative of trypsin. II. Effect of the polyelectrolyte carrier on the kinetic bahavior of the bound trypsin, Biochemistry, 3: 1913 (1964).

    Article  CAS  Google Scholar 

  2. E. Katchalski, I. Silman, and R. Goldman, Effect of the microenvironment on the mode of action of immoblilized enzymes, Adv. Enzymol., 34: 445 (1971).

    CAS  Google Scholar 

  3. D. H. Haynes, A fluorescent indicator of ion binding and electrostatic potential on the membrane surface, J. Membrane Biol., 17: 341 (1974).

    Article  CAS  Google Scholar 

  4. L. Wojtczak and M. J. NaIgcz, Surface charge of biological membranes as a possible regulator of membrane-bound enzymes, Eur. J. Biochem., 94: 99 (1979).

    Article  CAS  Google Scholar 

  5. K. S. Famulski, M. J. Nakgcz, and L. Wojtczak, Effect of the phosphorylation of microsomal proteins on the surface potential and enzyme activities, FEES Lett., 103: 260 (1979).

    Article  CAS  Google Scholar 

  6. K. S. Famulski, M. J. Nalecz, and L. Wojtczak, Phosphorylation of mitochondrial membrane proteins: Effect of the surface potential on monoamine oxidase, FEBS Lett., 157: 124 (1983).

    Article  CAS  Google Scholar 

  7. M. J. Nalecz, J. Zborowski, K. S. Famulski, and L. Wojtczak, Effect of phospholipid composition on the surface potential of liposomes and the activity of enzymes incorporated into liposomes, Eur. J. Biochem., 112: 75 (1980).

    Article  CAS  Google Scholar 

  8. L. Wojtczak, K. S. Famulski, M. J. Na/gcz, and J. Zborowski, Influence of the surface potential on the Michaelis constant of membrane-bound enzymes. Effect of membrane solubilization, FEES Lett., 139: 221 (1982).

    Article  CAS  Google Scholar 

  9. S. G. A. McLaughlin, G. Szabo, and G. Eisenman, Divalent ions and the surface potential of charged phospholipid membranes, J. Gen. Physiol., 58: 667 (1971).

    Article  CAS  Google Scholar 

  10. G. W. F. H. Borst-Pauwels, Ion transport in yeast, Biochim. Biophys. Acta, 650: 88 (1981).

    CAS  Google Scholar 

  11. A. P. R. Theuvenet and G, W. F. H. Borst-Pauwels, Effect of surface potential on Rb+ uptake in yeast. The effect of pH, Biochim. Biophys. Acta, 734: 62 (1983).

    Article  CAS  Google Scholar 

  12. L. Wojtczak and H. Za/uska, The inhibition of translocation of adenine nucleotides through mitochondrial membranes by oleate, Biochem. Biophys. Res. Commun., 28: 76 (1967).

    CAS  Google Scholar 

  13. L. Wojtczak, Effect of long-chain fatty acids and acyl-CoA on mitochondrial permeability, transport and energy-coupling processes, J. Bioenerg. Biomembr., 8: 293 (1976).

    CAS  Google Scholar 

  14. S. V. Pande and M. C. Blanchaer, Reversible inhibition of mitochondrial adenosine diphosphate phosphorylation by long chain acyl coenzyme A esters, J. Biol. Chem., 246: 402 (1971).

    CAS  Google Scholar 

  15. E. Lerner, A. I. Shug, and E. Shrago, Reversible inhibition of adenine nucleotide translocation by long chain fatty acyl coenzyme A esters in liver mitochondria of diabetic and hibernating animals, J. Biol. Chem., 247: 1513 (1972).

    CAS  Google Scholar 

  16. R. A. Harris, B. Farmer, and T. Ozawa, Inhibition of the mitochondrial adenine nucleotide transport system by oleyl CoA, Arch. Biochem. Biophys., 150: 199 (1972).

    Article  CAS  Google Scholar 

  17. M. L. Halperin, B. H. Robinson, and I. B. Fritz, Effect of palmitoyl CoA on citrate and malate transport by rat liver mitochondria, Biochemistry, 11: 949 (1972).

    Article  Google Scholar 

  18. F. Morel, G. Lauquin, J. Lunardi, J. Duszynski, and P. V. Vignais, An appraisal of the functional significance of the inhibitory effect of long chain acyl-CoA on mitochondrial transports, FEBS Lett., 39: 133 (1974).

    Article  CAS  Google Scholar 

  19. J. Duszynski and L. Wojtczak, Effect of detergents on ADP transport in mitochondria, FEBS Lett., 40: 72 (1974).

    Article  CAS  Google Scholar 

  20. H. Meisner, Inhibition of metabolite anion uptake in mitochondria by tetraphenylboron, Biochim. Biophys. Acta, 318: 383 (1973).

    Article  CAS  Google Scholar 

  21. J. Duszynski and L. Wojtczak, Effect of metal cations on the inhibition of adenine nucleotide translocation by acyl-CoA, FEBS Lett., 50: 74 (1975).

    Article  CAS  Google Scholar 

  22. L. Wojtczak, Effect of fatty acids and acyl-CoA on the permeability of mitochondrial membranes to monovalent cations, FEBS Lett., 44: 25 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Wojtczak, L. (1986). Effect of the Surface Potential on Membrane Enzymes and Transport. In: Papageorgiou, G.C., Barber, J., Papa, S. (eds) Ion Interactions in Energy Transfer Biomembranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8410-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8410-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8412-0

  • Online ISBN: 978-1-4684-8410-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics