Skip to main content

The Protonmotive Activity of Energy Transfer Proteins of Mitochondria

  • Chapter

Abstract

Proton flow represents a major device for energy transfer by membrane proteins. The molecular mechanism by which the protonmotive force is generated, transmitted and utilized is, however, matter of debate. The available knowledge supports the concept of Mitchell |1,2| that vectorial organization of primary protolytic reactions at the catalytic sites is central to energy transfer. The postulate |1| that vectoriality derives simply from anisotropic diffusion of the same chemical groups involved in primary catalysis doesn’t appear to be equally satisfactory |3|.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Mitchell, Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Glynn Research Bodmin, (1966).

    Google Scholar 

  2. P. Mitchell, Possible molecular mechanism of the protonmotive function of cytochrome system, J. Theor. Biol. 62: 327, (1976).

    Article  CAS  Google Scholar 

  3. S. Papa and M. Lorusso, The cytochrome chain of mitochondria: Electron transfer reactions and transmembrane proton translocation, in: “Biomembranes” R. M. Burton and F. Carcalho Guerra eds., Plenum Pub. Corp. N. Y. (1984).

    Google Scholar 

  4. S. Papa, Proton translocating reaction in the respiratory chain, Biochim. Biophys. Acta 456: 39, (1976).

    CAS  Google Scholar 

  5. S. Papa, Molecular mechanism of proton translocation by the cytochrome system and the ATPase of mitochondria. Role of proteins. J. Bioenerg. Biomembr. 14 /69, (1982).

    Google Scholar 

  6. J. Tittor, P. Hegemann and D. Oesterhelt, Retinal as a molecular switch in ion pumps, in: “Ion interactions in energy transport systems”, G. Papageorgiou, J. Barber, M. Karajannis, S. Papa eds., Plenum Publ. Corp. N. Y. (1985)

    Google Scholar 

  7. H. Tokuda, M. Sugasawa and T. Unemoto, Roles of Na+ and K+ in a-aminoisobutyric acid transport by the marine bacterium Vibrio alginolyticus, J. Biol. Chem. 257: 788, (1982)

    CAS  Google Scholar 

  8. S. Papa, M. Lorusso and F. Guerrieri, Mechanism of respiration driven proton translocation in the inner mitochondrial membrane. Analysis of proton translocation associated with oxidation of endogenous ubiquinol, Biochim. Biophys. Acta 387: 425, (1975)

    Article  CAS  Google Scholar 

  9. M. Wikström, K. Krab and M. Saraste, Proton-translocating cytochrome complexes, Ann. Rev. Biochem. 50: 623, (1981).

    Article  Google Scholar 

  10. P. Mitchell, Protonmotive cytochrome system of mitochondria, Ann. N. Y. Acad. Sci. 341: 564, (1980)

    Article  CAS  Google Scholar 

  11. S. Papa, F. Guerrieri and M. Lorusso, Mechanism of respiration-driven proton translocation in the inner mitochondrial membrane. Analysis of proton translocation associated to oxido-reductions of the oxygenterminal respiratory carriers, Biochim. Biophys. Acta 357: 181, (1974).

    Article  CAS  Google Scholar 

  12. S. Papa, Mechanism of active proton translocation of cytochrome systems, in: “Membranes and Transport” A. N. Martonosi ed. Plenum Publ. Corp. N. Y. (1982).

    Google Scholar 

  13. S. Papa, F. Guerrieri, M. Lorusso and S. Simone, Proton translocation and energy transduction in mitochondria, Biochimie 55: 703 (1973).

    Article  CAS  Google Scholar 

  14. G. Von Jagow, W. D. Engel and H. Schägger, On the mechanism of proton translocation linked to electron transfer at energy conversion site 2, in: “Vectorial Reactions in Electron and Ion Transport in Mitochondria and Bacteria”, F. Palmieri, E. Quagliariello, N. Siliprandi, E. C. Slater, eds. Elsevier/North Holland Biomedical Press, Amsterdam, (1981).

    Google Scholar 

  15. S. Papa, M. Lorusso, D. Boffoli and E. Bellomo, Redox-linked proton translocation in the b-c1 complex from beef-heart mitochondria reconstituted into phospholipid vesicles. General characteristics and control of electron flow by ApH+, Eur. J. Biochem. 137: 405 (1983).

    Article  CAS  Google Scholar 

  16. M. Wikström, and J. Berden, Oxidoreduction of cytochrome c in the presence of antimycin, Biochim. Biophys. Acta 283: 403, (1972).

    Article  Google Scholar 

  17. M. Lorusso, D. Gatti, D. Boffoli, E. Bellomo and S. Papa, Redox-linked proton translocation in the b-c1 complex from beef-heart mitochondria reconstituted into phospholipid vesicles. Studies with chemical modifiers of aminoacid residues, Eur J. Biochem. 137: 413 (1983).

    Article  CAS  Google Scholar 

  18. M. Lorusso, D. Gatti, M. Marzo and S. Papa, Effect of papain digestion on redox linked proton translocation in b-c1 complex of beef-heart reconstituted into liposomes, FEBS Lett. 182: 370 (1985).

    Article  CAS  Google Scholar 

  19. M. Degli Esposti, E. M. Meier, J. Timoneda and G. Lenaz, Modification of the catalytic function of the mitochondrial cytochrome b-c1 complex by dicyclohexylcarbodiimide,Biochim. Biophys. Acta 725: 349, (1983).

    Article  Google Scholar 

  20. G. Von Jagow, H. Schagger, W. D. Engel, P. Riccio, H. J. Kolb and M. Klingenberg, Complex III from beef-heart:Isolation by hydroxyapatite chromatography in Triton X-100 and characterization, in: Methods in Enzymology, Vol. 53, S. Fleischer and L. Packer eds.,Academic Press, New York,(1978).

    Google Scholar 

  21. S. Papa, F. Guerrieri, Proton conduction by H+-ATPase, in: “Chemiosmotic Proton Circuits in Biological Membranes” V. P. Skulachev and P. C. Hinkle eds. Addison-Wesley Publishing Company,Inc. Reading Mass,(1981).

    Google Scholar 

  22. P. Pedersen, M. Amzel, Proton ATPases:Structure and Mechanism, Ann. Rev. Biochem. 52: 801 (1983).

    Article  Google Scholar 

  23. W. Sebald, J. Hoppe and E. Wachter, Aminoacid sequence of the ATPase proteo-lipid from mitochondria,chloroplasts and bacteria(Wild type and mutants) in: “Function and Molecular Aspects of Biomembrane Transport” E. Quagliariello, F. Palmieri, S. Papa, M. Klingenberg eds., Elsevier/North Holland Biomedical Press, Amsterdam (1979).

    Google Scholar 

  24. J. Hoppe and W. Sebald, The proton conducting Fo-part of bacterial ATP synthases, Biochim. Biophys. Acta 768: 1 (1984)

    CAS  Google Scholar 

  25. S. Papa, F. Guerrieri, F. Zanotti and R. Scarfò, Flow and interactions of protons in the H+-ATPase of mitochondria, in: “Information and Energy transduction in biological membranes” C. L. Bolis, E. J. M. Helmereich, H. Passow, eds., Alan R. Liss, Inc. New York, (1984).

    Google Scholar 

  26. A. Pansini, F. Guerrieri and S. Papa, Control of proton conduction by the H-ATPase in the inner mitochondrial membrane, Eur. J. Biochem. 92: 45 (1978).

    Google Scholar 

  27. J. Kopecky, F. Guerrieri and S. Papa, Interaction of dicyclohexylcarbodiimide with the proton conducting pathway of mitochondrial H+-ATPase, Eur. J. Biochem. 131: 17 (1983)

    Article  CAS  Google Scholar 

  28. K. Brocklehurst and Little, G., Reactions of papain and low M. W. thiols with some aromatic disulphides. Biochm. J. 133: 67, (1973)

    CAS  Google Scholar 

  29. F. Guerrieri and S. Papa, Effect of chemical modifiers of aminoacid residues on proton conduction by the H+-ATPase of mitochondria, J. Bioenerg. Biomembr. 13: 393 (1981).

    Article  CAS  Google Scholar 

  30. R. Sanadi, Mitochondrial coupling Factor B, Biochim. Biophys. Acta, 683: 39 (1982).

    CAS  Google Scholar 

  31. F. Zanotti, F. Guerrieri, R. Scarfb, J. Berden and S. Papa, Effect of diamide on proton translocation by the mitochondrial H+-ATPase, in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Papa, S. (1986). The Protonmotive Activity of Energy Transfer Proteins of Mitochondria. In: Papageorgiou, G.C., Barber, J., Papa, S. (eds) Ion Interactions in Energy Transfer Biomembranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8410-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8410-6_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8412-0

  • Online ISBN: 978-1-4684-8410-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics