Skip to main content

The Reactivity of Active Sites and Monomers in Homogeneous Ionic Systems

  • Chapter
  • 60 Accesses

Part of the book series: Macromolecular Compounds ((MMCO))

Abstract

The problem of the reactivity of initiators of growing chains, and in particular of monomers, is treated from one or another point of view in all the general works and in a considerable number of original papers on ionic polymerization. In this chapter an attempt is made to determine the progress which has been made in modern concepts in this field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. L. Erusalimskii, “Structure and reactivity of anionic active centers,” J. Polym. Sci., Polym. Symp., 62, 29–50 (1978).

    CAS  Google Scholar 

  2. B. J. Wakefield, The Chemistry of Organolithium Compounds, Pergamon Press, New York (1974).

    Google Scholar 

  3. V. N.Zgonnik, E. Yu. Melenevskaya, and B. L. Erusalimskii, “The study of active centers in anionic polymerization using spectroscopic and quantum-chemical methods,” Usp. Khim., 47, 1479–1503 (1978).

    CAS  Google Scholar 

  4. A. Streitwieser, Jr., J. A. Williams, S. Alexandratos, and J. M. McKelvey, “Ab initio SCF-MO calculations of methyllithium and related systems. Absence of the covalent character in the C—Li bond,” J. Am. Chem. Soc., 98, 4778–4784 (1976).

    CAS  Google Scholar 

  5. J. D. Dill, P. v. R. Schleyer, J. S. Binkley, and J. A. Pople, “Molecular-orbital theory of the electronic structure of molecules. 34. Structure and energies of small compounds containing lithium or beryllium. Ionic, multicenter, and coordinate bonding,” J. Am. Chem. Soc., 99, 6169–6173 (1977).

    Google Scholar 

  6. T. Clark, J. Chandrasekhar, and P. v. R. Schlery, “7Li-13C NMR coupling constants and the nature of the carbon—lithium bond: INDO MO calculations,” J. Chem. Soc., Chem. Commun., 671–673 (1980).

    Google Scholar 

  7. G. D. Graham, D. S. Maryninch, and W. N. Lipscomb, “Effects of basic set and configuration interaction on the electronic structure of CH3Li with comments on the nature of the C—Li bond,” J. Am. Chem. Soc., 102, 4572–4578 (1980).

    CAS  Google Scholar 

  8. G. D. Graham, S. Richtmeister, and D. A. Dixon, “Electronic structure of the alkvllithium clusters (CH3Li)n (n = 1–6) and (C2H5Li)n (n = 1–2),” J. Am. Chem. Soc., 102, 5759–5766 (1980).

    CAS  Google Scholar 

  9. M. Morton and L. J. Fetters, “Homogeneous anionic polymerization. V. Association phenomena in organolithium polymerization,” J. Polym. Sci., A2, 3311–3326 (1964).

    Google Scholar 

  10. R. Ohlinger, “Kinetischer Untersuchungen der mit Lithium-organischen Washstumskatalysatoren initiierten Copolymerisation von Butadien und Styrol mit dem Ziel der Darstellung von statistischen Copolymeren mit bestimmter Butadien-StyrolZusammensetzung,” Dissertation, Hamburg (1974).

    Google Scholar 

  11. V. V. Shamanin, E. Yu. Melenevskaya, and V. N. Zgonnik, “The influence of the concentration of growing chains on the polymerization rate and the microstructure of the polymer formed in the polybutadienyllithium—butadiene—aliphatic hydrocarbon system,” Acta Polym., 33, 175–181 (1982).

    CAS  Google Scholar 

  12. A. Hernandez, J. Semel, H.-Ch. Broeker, H. G. Zachmann, and H. Sinn, “The determination of the degree of association of polyisoprenyllithium in heptane,” Makromol. Chem. Rapid Commun., 1, 75–77 (1980).

    CAS  Google Scholar 

  13. S. Bywater, “The preparation and properties of star-branched polymers,” Adv. Polym. Sci., 30, 89–116 (1979).

    CAS  Google Scholar 

  14. K. Matsuzaki, Y. Shinohara, and T. Kendai, “Nuclear magnetic resonance studies on polymer carbanions. 1. Living polystyrene and its model compounds,” Makromol. Chem., 181, 1923–1934 (1980).

    CAS  Google Scholar 

  15. S. Dumas, B. Marti, J. Sledz, and F. Shué, “The influence of N,N,N’,N’-tetramethylethylenediamine on the anionic polymerization of isoprene in cyclohexane,” J. Polym. Sci., B16, 81–86 (1978).

    CAS  Google Scholar 

  16. W. Gebert, J. Hinz, and H. Sinn, “Umlagerungen bei der durch Lithiumbutyl initiierten Polyreaktion der Diene Isopren und Butadien,” Makromol. Chem., 144, 97–115 (1971).

    CAS  Google Scholar 

  17. E. Yu. Melenevskaya, V. N. Zgonnik, V. M. Denisov, E. R. Dolinskaya, and K. K. Kalnin’sh, “The nature of the active centers in the copolymerization of styrene with butadiene initiated by an n-butyllithium—tetramethylethylenediamine complex,” Vysokomol. Soedin., A21, 2008–2016 (1979).

    CAS  Google Scholar 

  18. L. V. Vinogradova, N. I. Nikolaev, and V. N. Zgonnik, “The nature and reactivity of the active centers in the system butadiene—n-butyllithium—tetramethylethylenediamine—hydrocarbon medium,” Vysokomol. Soedin., A18, 1756–1761 (1976).

    CAS  Google Scholar 

  19. L. V. Vinogradova, N. I. Nikolaev, V. N. Zgonnik, and B. L. Erusalimskii, “Forms of existence and relative activity of polybutadienyllithium in the polymerization of butadiene,” Eur. Polym. J., 19, 617–620 (1983).

    CAS  Google Scholar 

  20. A. A. Davidyan, N. I. Nikolaev, V. N. Zgonnik, and K. K. Kalnin’sh, “The reactivity and physicochemical features of the active centers in the system isoprene—butyllithium—tetramethylethylenediamine—hexane,” Vysokomol. Soedin., B17, 586–590 (1975).

    CAS  Google Scholar 

  21. A. A. Davidyan, N. I. Nikolaev, V. N. Zgonnik, and V. I. Petrova, “The reactivity and physicochemical features of the active centers in the system isoprene—oligoisoprenyllithiumdimethoxyethane—hexane,” Vysokomol. Soedin., A18, 2004–2010 (1976).

    CAS  Google Scholar 

  22. M. Morton, L. Fetters, and E. Bostick, “Mechanisms of homogeneous anionic polymerization by alkyllithium initiators,” J. Polym. Sci., Cl, 311–323 (1963).

    Google Scholar 

  23. S. Bywater, “Anionic polymerization,” Adv. Polym. Sci., 4, 66–110 (1965).

    CAS  Google Scholar 

  24. A. A. Davidyan, “The reactivity and physicochemical features of the active centers in the system isoprene—alkenyllithiumelectron donor,” Dissertation, Inst. Vyskomol. Soedin. Akad. Nauk SSSR, Leningrad (1977).

    Google Scholar 

  25. Yu. E. Eizner and B. L. Erusalimskii, The Electronic Aspect of Polymerization Reactions [in Russian], Nauka, Leningrad (1976).

    Google Scholar 

  26. H. F. Ebel, “Structure and reactivity of carbanions and carbanioid compounds,” Fortschr. Chem. Forsch., 12, 387–439 (1969).

    CAS  Google Scholar 

  27. I. G. Krasnosel’skaya (Krasnoselskaya) and B. L. Erusalimskii (Erussalimsky). Erusalimskii (Erussalimsky), “Sequences of complex formation in the polymerization processes induced by organomagnesium compounds,” Eur. Polym. J., 13, 775–781 (1977).

    Google Scholar 

  28. B. L. Erusalimskii, “Overall and individual effects in systems including organolithium compounds,” Makromol. Chem., 182, 911–915 (1981).

    Google Scholar 

  29. B. L. Novoselova and B. L. Erusalimskii, “Mechanisms der durch Lithiuminitiatoren angeregten Polymerisation von Acrylnitril,” Faserforsch. Textiltech., 26, 293–300 (1975).

    Google Scholar 

  30. K. Hatada, T. Kitayama, K. Fumikawa, K. Ohta, and H. Yuki, “Studies on the anionic polymerization of methyl methacrylate initiated with butyllithium in toluene using perdeuterated monomer,” in: ACS Symposium Series 166, J. E. McGrath (editor), 327–341 (1981).

    Google Scholar 

  31. A. Davidyan (Davidjan), N. I. Nikolaev, V. N. Zgonnik (Sgonnik), B. G. Belen’kii (Belenkii), V. V. Nesterov, V. D. Krasikov (Krasikow), and B. L. Erusalimskii (Erussalimsky). Erusalimskii (Erussalimsky), “Subkatalystische Effekte im System Isopren—OligoisoprenyllithiumN,N,N’,N’-Tetramethylethylendiamin. 2. Umsatzabhangigkeiten der Molekulargewichtsverteilung and Mikrostrucktur der Polymere,” Makromol. Chem., 179, 2155–2160 (1978).

    Google Scholar 

  32. B. L. Erusalimskii, A. A. Davidyan, N. I. Nikolaev, V. N. Zgonnik, V. G. Belen’kii, V. D. Krasikov, V. V. Nesterov, and M. L. Kononenko, “Polymerization in the butadiene—styrene system under the action of organolithium active centers with sub-catalytic quantities of tetramethylethylenediamine,” Vysokomol. Soedin., A25, 2121–2125 (1983).

    CAS  Google Scholar 

  33. I. M. Panayotov and G. Heublein, “Cationic polymerization in the presence of 7-electron acceptors,” J. Macromol. Sci., Chem., A11, 2065–2086 (1977).

    Google Scholar 

  34. C. Reichardt, “Solvent effects in organic chemistry,” in: Monographs in Modern Chemistry, H. F. Ebel (editor), Vol. 3, Verlag Chemie, Weinheim (1979), pp. 1–355.

    Google Scholar 

  35. T. Shinohara, J. Smid, and M. Szwarc, “Effect of solvation of ion pairs,” J. Am. Chem. Soc., 90, 2175–2177 (1968).

    CAS  Google Scholar 

  36. H. Hirohara and N. Ise, “On the growing active centers and their reactivities in ”living“ anionic polymerization of styrene and its derivatives,” J. Polym. Sci. D., Macromol. Rev., 6, 295–336 (1972).

    CAS  Google Scholar 

  37. A. Gandini and H. Cheradamé, “Cationic polymerization. Initiation with alkenyl monomers,” Adv. Polym. Sci., 34/35, 1–289 (1979).

    Google Scholar 

  38. J. P. Lorimer and D. C. Pepper, “A stopped-flow study of the ”free-ion“ polymerization of styrene by HC1O,, in CH2C12 at low temperature,” Int. Symp. on Cationic Polymerization, Rouen (1973), prepr. C23.

    Google Scholar 

  39. M. Sawamoto, T. Masuda, and T. Higashimura,“ Cationic polymerization of styrene by protic acids and their derivatives. 2. Two propagating species in the polymerization by CF3SO3H,” Makromol. Chem., 177, 2995–3007 (1976).

    CAS  Google Scholar 

  40. M. Sawamoto and H.Higashimura, “Stopped-flow study of the cationic polymerization of p-methoxystyrene. Evidence for the multiplicity of the propagation species,” Macromolecules, 11, 502–504 (1978).

    Google Scholar 

  41. S. Penczek, P. Kubisa, and K. Matyjaszewski, “Cationic ring-opening polymerization,” Adv. Polym. Sci., 37, 1–149 (1980).

    Google Scholar 

  42. S. Penczek and R. Szymansky, “The carbenium—onium ion equilibrium in cationic polymerization,” Polym. J., 12, 617–628 (1980).

    CAS  Google Scholar 

  43. K. Matyjaszewski, S. Slomkowski, and S. Penczek, “Kinetics and mechanism of the cationic polymerization of tetrahydrofuran in solution. THF—CH2C12 and THE—CH2C12—CH3NO2 systems,” J. Polym. Sci., Chem. Ed., 17, 2413–2422 (1979).

    CAS  Google Scholar 

  44. K. Matyjaszewski, T. Diem, and S. Penczek, “Rate constants of propagation of THF on macroesters and macroions,” Makromol. Chem., 180, 1827–1829 (1979).

    Google Scholar 

  45. R. Busson and M. van Beylen, “The Hammett relation in anionic polymerization. Reaction of polystyryl alkali salts with di-substituted 1,1-diphenylethylenes,” Macromolecules, 10, 3120–3136 (1977).

    Google Scholar 

  46. A. A. Arest-Yakubovich, “Alkaline earth metals as initiators of the anionic polymerization of unsaturated monomers,” Usp. Khim., 1141–1167 (1981).

    Google Scholar 

  47. B. I. Nakhmanovich, V. A. Korolev, and A. A. Arest-Yakubovich, “The kinetics of the polymerization of butadiene and styrene under the action of bis-triphenylmethylbarium in THF,” Vysokomol. Soedin., A18, 1480–1485 (1976).

    CAS  Google Scholar 

  48. A. H. E. Müller, “The present view of the anionic polymerization of methyl methacrylate and related esters in polar solvents,” ACS Symposium Series 166, J. E. McGrath (editor), 441–461 (1981).

    Google Scholar 

  49. R. Craft, A. H. E. Müller, V. Warzelhan, H. Höcker, and G. V. Schulz, “On the structure of propagating species in the anionic polymerization of methyl methacrylate. Kinetic investigation in tetrahydrofuran using monofunctional initiators,” Macromolecules, 11, 1093–1096 (1978).

    Google Scholar 

  50. R. Craft, A7-H. E. Müller, H. Höcker, and G. V. Schulz, “Kinetics of anionic polymerization of methyl methacrylate in 1,2-dimethoxyethane,” Makromol. Chem. Rapid Commun., 1, 363–368 (1980).

    Google Scholar 

  51. C. Johann and A. H. E. Müller, “Kinetics of anionic polymerization of methyl methacrylate using cryptated sodium counterions in tetrahydrofuran,” Makromol. Chem. Rapid Commun., 2, 687–691 (1981).

    CAS  Google Scholar 

  52. H. Jeuk and A. H. E. Müller, “Kinetics of the anionic polymerization of methyl methacrylate in tetrahydrofuran using lithium and potassium as counterions,” Makromol. Chem. Rapid Commun., 3, 121–125 (1982).

    Google Scholar 

  53. S. Murahashi, H. Yuki, H. Hatada, and T. Okata, “Polymerization of methyl methacrylate by diethylaluminumdiphenylamide. II. Initiation and stereoregulation in the polymerization reaction,” Chem. High Polym., 24, 309–317 (1967).

    CAS  Google Scholar 

  54. E. V. Milovskaya, M. N. Makarychev-Mikhailov, and E. P. Skvortsevich, “Organoaluminum compounds as initiators in the anionic polymerization of methacrylates,” Vysokomol. Soedin., A17, 1217–1222 (1975).

    CAS  Google Scholar 

  55. E. P. Skvortsevich, E. L. Kopp, and E. B. Milovskaya, “A1R32,2-dipyridyl systems as initiators in anionic polymerization,” Vysokomol. Soedin., A19, 1736–1743 (1977).

    CAS  Google Scholar 

  56. E. B. Milovskaya and Yu. E. Eizner, “Electronic structure, conformation, and reactivity of the active centers of anionic polymerization with an aluminum counterion,” Eur. Polym. J., 15, 889–893 (1979).

    CAS  Google Scholar 

  57. E. P. Skvortsevich, E. L. Kopp, V. V. Mazurek, and E. B. Milovskaya, “The kinetics of the polymerization of methyl methacrylate under the action of triethylaluminum-2,2’-dipyridyl system,” Vysokomol. Soedin., A21, 1554–1561 (1979).

    CAS  Google Scholar 

  58. E. L. Kopp, E. P. Skvortsevich, V. M. Denisov, A. I. Kol’tsov, and E. B. Milovskaya, “The catalytic activity of A1R3–2,2-dipyridyl systems,” Izv. Akad. Nauk SSSR, Ser. Khim., No. 9, 2055–2058 (1977).

    Google Scholar 

  59. I. G. Krasnosel’skaya, B. L. Erusalimskii, and G. N. Novinskaya, “The effect of magnesium alkoxides on polymerization in polar monomer—organomagnesium initiator systems,” Vysokomol. Soedin., A16, 1730–1735 (1974).

    Google Scholar 

  60. V. V. Mazurek, Polymerization under the Action of Transition Metals [in Russian], Nauka, Leningrad (1974).

    Google Scholar 

  61. N. A. Shirokov and V. V. Mazurek, “The tris -allylchromiumpyridine system as an initiator of the polymerization of methylmethacrylate,” Vysokomol. Soedin., A18, 1687–1690 (1976).

    Google Scholar 

  62. L. A. Fedorova, V. V. Mazurek, N. A. Shirokov, and L. D. Turkova, “The nature and specificity of the active centers in the tris-ir-allylchromium—pyridine—acrylonitrile system,” React. Kinet. Catal. Lett., 15, 361–365 (1980).

    CAS  Google Scholar 

  63. L. A. Fedorova, V. V. Mazurek, N. A. Shirokov, and L. D. Turkova, “Systems based on tris-i-allylchromium as initiators in the polymerization of acrylonitrile,” Vysokomol. Soedin., A23, 1749–1754 (1981).

    CAS  Google Scholar 

  64. L. A. Fedorova, V. V. Mazurek, N. A. Shirokov, and L. D. Turkova, “The tris-r-allylchromium-2,2-dipyridyl system as an initiator of acrylonitrile polymerization,” React. Kinet. Catal. Lett., 23, 343–347 (1983).

    CAS  Google Scholar 

  65. W. Obrecht and P. H. Plesch, “The polymerization of styrene by trifluoroacetic acid,” Makromol. Chem., 182, 1459–1473 (1981).

    CAS  Google Scholar 

  66. K. Mejzlik and M. Lesna, “A comparison of the methods used to determine the active centers in the polymerization of Ziegler-Natta olefins,” V Int. Mikrosymp. Fortschr. in Ionenpolymerization, Prague (1982), prepr. 50.

    Google Scholar 

  67. V. A. Zakharov, T. D. Bukatov, and Yu. I. Ermakov, “A mechanism of the catalytic polymerization of olefins based on data on the number of active centers and rate constants of the individual stages,” Usp. Khim., 49, 2213–2240 (1980).

    CAS  Google Scholar 

  68. H. Franz, H. Meyer, and K.-H. Reichert, “An attempt to determine the concentration of active sites in supported Ziegler-Natta catalysts,” Polymer, 22, 226–230 (1981).

    CAS  Google Scholar 

  69. J. Herwig, “Olefinpolymerisation mit löslischen insbesondere halogenfreien Ziegler Katalysatoren unter Verwendung von oligomerem Methylalumoxan als Aluminiumalkylkomponente,”Dissertation, Hamburg (1979).

    Google Scholar 

  70. J. Pein, “Untersuchungen von Systemen aus Cyclopentadienylzircon(IV)- Verbindungen mit n-Propylaluminium-Verbindungen,” Dissertation, Hamburg (1980).

    Google Scholar 

  71. A. Andresen, “UV-Spektroskopische Untersuchungen an homogen Ziegler-Natta Katalysatoren mit Methylalumoxan als Katalysatorkomponente,” Dissertation, Hamburg (1980).

    Google Scholar 

  72. H. Sinn, W. Kaminsky, H.-J. Vollmer, and R. Woldt, “’Lebende Polymere’ bei Ziegler Katalysatoren extremer Productivität,” Angew. Chem., 92, 396, 401–402 (1980).

    Google Scholar 

  73. H. Sinn and W. Kaminsky, “Ziegler-Natta catalysis,” Adv. Organomet. Chem., 16, 99–149 (1980).

    Google Scholar 

  74. W. Kaminsky, H. Sinn, and H.-J. Vollmer, “Extrem verzerrte Bindungswinkel bei organozirkonium Verbindungen, die gegen Ethylen aktiv sind,” Angew. Chem., 88, 688–689 (1976).

    CAS  Google Scholar 

  75. J. Boor, Jr., Zielger-Natta Catalysts and Polymerizations, Academic Press, New York (1979).

    Google Scholar 

  76. V. E. Lvovsky, E. A. Fushman, and F. S. Dyachkovsky, “A study of the structure and reactivity of the complexes of cyclopentadienyltitanium derivatives with alkylaluminum halides,” J. Mol. Catal., 10, 43–56 (1981).

    Google Scholar 

  77. J. Cihlar, J. Mejzlik, and O. Hamrik, “The influence of water on ethylene polymerization catalyzed by titanocene systems,” Makromol. Chem., 179, 2333–2358 (1978).

    Google Scholar 

  78. K. H. Reichert and K. R. Meyer, “Zur Kinetik der Niederdruck-polymerisation von Athylen mit löslischen Ziegler-Katalysatoren,” Makromol. Chem., 169, 163–176 (1973).

    CAS  Google Scholar 

  79. K. J. Toelle, J. Smid, and M. Szwarc, “The absolute rate constants of propagation of the free living polystyrene ions and the dissociation constant of the %S”,Na ion pair,“ J. Polym. Sci., B3, 1037–1041 (1965).

    CAS  Google Scholar 

  80. H. Hostalka and G. V. Szwarc,“ Some remarks on the comments by Toelle, Smid, and Szwarc,” J. Polym. Sci., B3, 1043–1044 (1965).

    Google Scholar 

  81. B. J. Schmitt and G. V. Schulz, “Über zwei formen des Initiators Na-Naphthalin und die Bestimmung der ‘lebenden’ Kettenenden in der anionischen Polymerisation,” Makromol. Chem., 121, 184–204 (1969).

    CAS  Google Scholar 

  82. P. H. Plesch, “Propagation rate constants in cationic polymerization,” Adv. Polym. Sci., 8, 137–154 (1971).

    CAS  Google Scholar 

  83. K. S. Kazanskii, A. A. Solov’yanov, and S. G. Entelis, “The nature of the active centers and the mechanism of the anionic polymerization of epoxides,” in: Advances in Ionic Polymerization [in Russian], Warsaw (1975), pp. 77–87.

    Google Scholar 

  84. P. Sigwalt, “The mechanism and kinetics of anionic polymerization of episulfides,” IUPAC Int. Symp. on Macromol. Chem., Budapest (1969), pp. 251–280.

    Google Scholar 

  85. S. Penczek, P. Kubisa, and K. Matyjaszewski, “Cationic ring-opening polymerization,” Adv. Polym. Sci., 37, 1–149 (1980).

    Google Scholar 

  86. A. A. Korotkov and A. F. Podolskii, The Catalytic Polymerization of Vinyl Monomers [in Russian], Nauka, Leningrad (1973).

    Google Scholar 

  87. F. S. Dainton, G. A. Harpell, and K. J. Ivin, “The kinetics of anionic polymerization of a-methylstyrene in tetrahydrofuran and dioxane,” Eur. Polym. Sci., 5, 395–403 (1969).

    CAS  Google Scholar 

  88. L. V. Vinogradova, V. N. Zgonnik (Sgonnik), N. I. Nikolaev, and E. P. Vetchinova. Vetchinova, “The polymerization of butadiene by polybutadienyllithium in the presence of tetrahydrofuran,” Eur. Polym. J., 16, 799–801 (1980).

    CAS  Google Scholar 

  89. S. Bywater and W. J. Worsfold, “Anionic polymerization of isoprene. Ion and ion pairs contribution to the polymerization in THF,” Can. J. Chem., 45, 1821–1824 (1967).

    CAS  Google Scholar 

  90. G. Helary and M. Fontanille, “The activation of styrene by crown tertiary amines in cyclohexane,” Polym. Bull., 3, 159–165 (1981).

    Google Scholar 

  91. T. Shimomura, J. Smid, and M. Szwarc, “Reactivities of contact and solvent-separated ion pairs. Anionic polymerization of styrene in dimethoxyethane,” J. Am. Chem. Soc., 89, 5743–5749 (1969).

    Google Scholar 

  92. M. Szwarc, Carbanions, Living Polymers and Electron Transfer Processes, Interscience, New York (1968).

    Google Scholar 

  93. M. Szwarc (editor), Ions and Ion Pairs in Organic Reactions, Interscience, New York (1972).

    Google Scholar 

  94. B. L. Erusalimskii, Ionic Polymerization of Polar Monomers [in Russian], Nauka, Leningrad (1970).

    Google Scholar 

  95. B. L. Erusalimskii, “über einige Besonderheiten der anionischen Polymerisation polarer Monomerer,” Plaste Kautsch, 15, 788–792 (1968).

    CAS  Google Scholar 

  96. G. E. Ham (editor), Copolymerization, Interscience, New York (1964).

    Google Scholar 

  97. G. E. Ham, “Ionic copolymerization,” J. Macromol. Sci., Chem., A11, 227–230 (1970).

    Google Scholar 

  98. P. Kubisa and S. Penczek, “Penultimate unit influence in the cationic copolymerization of tetrahydrofuran with oxetanes,” J. Macromol. Sci., Chem., A7, 1509–1524 (1973).

    Google Scholar 

  99. R. Ohlinger and F. Bandermann, “Kinetics of the propagation reaction of butadiene—styrene copolymerization with organo-lithium compounds,” Makromol. Chem., 181, 1935–1947 1980 ).

    CAS  Google Scholar 

  100. V. N. Zgonnik, N. I. Nikolaev, E. Yu. Shadrina, and L. V. Níkonova, “Copolymerization of butadiene with styrene on butyllithium complexes with tetramethylethylenediamine and 2,3-dimethoxybutane,” Vysokomol. Soedin., B15, 684–686 0973 ).

    Google Scholar 

  101. M. M. F. Al-Jarrah and R. N. Young, “Anionic copolymerization of vinylbiphenyl: kinetics of a system having spectroscopically distinguishable ion pairs,” 26th Int. Symp. on Macromolecules, Mainz (1979), Vol. 1, pp. 373–376.

    Google Scholar 

  102. S. R. Rafikov, Z. M. Sabírova, O. A. Ponomarev, G. S. Lomskii, Yu. B. Monakov, and K. S. Minsker, “The connection of the stereospecific effectswiththe nature of the counterion in the anionic polymerization of dienes,” Dokl. Akad. Nauk SSSR, 259, 1139–1143 (1981).

    CAS  Google Scholar 

  103. T. Higashimura, J. Masamoto, S. Okamura, and T. Yonezawa, “Cationic polymerization of 1,2-dialkoxyethylenes,” Polym. J., 2, 154–160 (1972).

    Google Scholar 

  104. T. Higashimura, K. Kawamura, and T. Masusada, “Cationic polymerization of a,ß-disubstituted olefins. Part 17. Effect of polymerization conditions on the reativity of alkenyl ethers relative to vinyl ethers,” J. Polym. Sci., Polym. Chem. Ed., 11, 713–722 (1973).

    CAS  Google Scholar 

  105. T. Higashimara and K. Yamamoto, “Cationic polymerization of a,13-disubstituted ethylenes. Investigation of the propagation reaction,” Makromol. Chem., 175, 1139–1156 (1974).

    Google Scholar 

  106. Yu. E. Eizner and B. L. Erusalimskii, “The electron structure of the active centers of a linear oxonium ionic type,” Vysokomol. Soedin., Al2, 1614–1620 (1970).

    Google Scholar 

  107. T. Kelen, P. Tudos, B. Turesâny, and J. P. Kennedy, “An analysis of the linear methods for determining copolymerization reactivity ratios. IV. A comprehensive and critical reexamination of carbocationic copolymerization data,” J. Polym. Sci., Polym. Chem. Ed., 15, 3047–3074 (1977).

    CAS  Google Scholar 

  108. I. Artamonova, S. Klenin, A. Troitskaya, and B. Erusalimskii (Erussalimsky). Erusalimskii (Erussalimsky), “Zum mechanismus der anionischen Copolymerisation polarer ungesättigter Monomere,” Makromol. Chem., 175, 2329–2338 (1974).

    CAS  Google Scholar 

  109. I. L. Artamonova, V. V. Mazurek, and B. L. Erusalimskii, “The influence of temperature on the composition of copolymers formed in the acrylonitrile-methylacrylate—butyllithium system,” Vysokomol. Soedin., B19, 179–181 (1977).

    CAS  Google Scholar 

  110. I. L. Artamonova, A. V. Novoselova, S. I. Vinogradova, B. L. Erusalimskii, H.-J. Adler, and W. Berger, “Copolymerization von Acrylnitril mit Acrylaten mittels Lithiumalkoxiden,” Faserforsch. Textiltech., 28, 511–514 (1977).

    CAS  Google Scholar 

  111. K. Brzezinska, K. Matyjaszewski, and S. Penczek, “Macroion pairs and macroions in the kinetics of the polymerization of oxepane,” Makromol. Chem., 179, 2387–2395 (1978).

    CAS  Google Scholar 

  112. G. L. Collins, R. K. Greene, F. M. Berardinelli, and W. H. Ray, “Fundamental considerations on the mechanism of copolymerization of trioxane with ethylene oxide initiated with boron trifluoride dibutyl etherate,” J. Polym. Sci., Polym. Chem. Ed., 19, 1597–1607 (1981).

    CAS  Google Scholar 

  113. V. Jaacks, “Anomalien bei der kationischen Copolymerisation von Trioxan, 32. Mitt. über Polyoxymethylene,” Makromol. Chem., 101, 33–57 (1967).

    CAS  Google Scholar 

  114. W. Kern and V. Jaacks, “Some kinetic effects in polymerization of 1,3,5-trioxane,” J. Polym. Sci., 48, 399–404 (1970).

    Google Scholar 

  115. M. Okada, S. Kozawa, and Y. Yamashita, “Kinetic studies on the polymerization of 1,3-oxepane initiated with triethyloxonium tetrafluoroborate,” Makromol.Chem., 127, 271–281 (1969).

    CAS  Google Scholar 

  116. N. M. Geller, Yu. E. Eizner, and V. A. Kropachev, “Change in electron structure of cyclic oxides during their interaction with electron acceptors. Quantum chemical investigation,” Acta Polym., 32, 144–149 (1981).

    CAS  Google Scholar 

  117. N. M. Geller, Yu. E. Eizner, and V. A. Kropachev, “The effect of substituents on the electronic structure of the complexes of cyclic oxides with an electron acceptor. Quantum-chemical investigation,” Acta Polym., 34, 584–588 (1983).

    CAS  Google Scholar 

  118. E. G. Furman and A. P. Meleshevich, “A study of the influence of the nature of the substituent on the electronic state of the epoxide ring using the CNDO/2 method,” Teor. Eksp. Khim., 13, 328–333 (1977).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Consultants Bureau, New York

About this chapter

Cite this chapter

Erusalimskii, B.L. (1986). The Reactivity of Active Sites and Monomers in Homogeneous Ionic Systems. In: Mechanisms of Ionic Polymerization. Macromolecular Compounds. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8392-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8392-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8394-9

  • Online ISBN: 978-1-4684-8392-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics