Skip to main content

The Informativeness of Research Methods into Ionic Active Sites

  • Chapter
  • 61 Accesses

Part of the book series: Macromolecular Compounds ((MMCO))

Abstract

The methods used for the study of non-free-radical active sites which are responsible for the formation of macromolecules are mainly spectroscopic, electrochemical, and quantum-chemical. Among these, spectroscopic methods are used extensively, their application to the study of such species already becoming routine by the 1960’s. The parallel electrochemical methods are important in a small range of suitable systems. Quantum-chemical studies began to advance to general systems only by the mid-seventies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Szwarc, Carbanions, Living Polymers and Electron Transfer Processes, Interscience, New York (1968).

    Google Scholar 

  2. M. Szwarc (editor), Ions and Ion Pairs in Organic Reactions, Vol. 2, Interscience, New York (1974).

    Google Scholar 

  3. Ch. B. Tsvetanov, V. N. Zgonnik, I. Panayotov, and B. L. Erusalimskii, “Langkettige alkalimetallorganische verbindungen vom Type: RCHZCH(CN)M: Herstellung, spektrosckopische und elektrochemische Charackterisierung,” Ann. Chem., 763, 545–548 (1973).

    Google Scholar 

  4. L. V. Vinogradova, V. N. Zgonnik, N. I. Nikolaev, and Ch. B. Tsvetanov, “Electric conductivity of polybutadienyl-and polyisoprenyllithium in tetrahydrofuran and dimethoxyethane,” Eur. Polym. J., 15, 545–550 (1979).

    Article  CAS  Google Scholar 

  5. I. V. Berlinova, I. M. Panayotov, and Ch. B. Tsvetanov, “Conductivity studies on living polymers with an a-oxide terminal unit in tetrahydrofuran,” Eur. Polym. J., 12, 485–488 (1976).

    Article  CAS  Google Scholar 

  6. L. V. Vinogradova, N. I. Nikolaev, V. N. Zgonnik, B. L. Erusalimskii, G. V. Sinitsina, Ch. B. Tsvetanov, and I. M. Panayotov, “Changes in the electrochemical characteristics and the UV spectra of polydienyllithium chains on storage in polar media,” Eur. Polym. J., 17, 517–520 (1981).

    Article  CAS  Google Scholar 

  7. A. Persoons, “Field dispersion effects and chemical relaxation in electrolyte solutions of low polarity,” J. Phys. Chem., 78, 1210–1217 (1978).

    Article  Google Scholar 

  8. A. Persoons and M. Van Beylen, “The dynamics of electric field effects in ion-pairing processes,” Pure Appl. Chem., 51, 887–900 (1979).

    CAS  Google Scholar 

  9. T. E. Hogen-Esch and J. Smid, “Studies of contact and solvent-separated ion pairs of carbanions,” J. Am. Chem. Soc., 88, 307–318 (1966).

    Article  CAS  Google Scholar 

  10. R. M. Fuoss, “Non-coulomb variation of ion pairing in polar solvents,” J. Am. Chem. Soc., 100, 5576–5577 (1978).

    Article  CAS  Google Scholar 

  11. A Gandini and H. Cheradamé, “Cationic polymerization. Initiation with alkenyl monomers,” Adv. Polym. Sci., 34/35 , 1–289 (1979).

    Article  Google Scholar 

  12. D. W. Grattan and P. H. Plesch, “Ionization of aluminum halides in alkyl halides,” J. Chem. Soc. Dalton Trans., 1734–1744 (1977).

    Google Scholar 

  13. D. W. Grattan and P. H. Plesch, “The initiation of polymerization by aluminum halides,” Makromol. Chem., 181, 751–775 (1980).

    Article  CAS  Google Scholar 

  14. M. Chmelir, M. Marek, and O. Wichterle, “Polymerization of isobutylene catalyzed by aluminum tribromide,” J. Polym. Sci., C16, 833–839 (1967).

    CAS  Google Scholar 

  15. M. Chmelir and M. Marek, “Influence of some Friedel—Crafts halides on the polymerization of isobutylene catalyzed by aluminum bromide,” J. Polym. Sci., C23, 223–229 (1968).

    Google Scholar 

  16. P. Lopour and M. Marek, “Polymerisation des Isobutylenes durch zweikomponenten Katalysatorsysteme die Aluminiumhalogenid als eine der Kompenente enthalten,” Makromol. Chem., 134, 23–31 (1970).

    Article  CAS  Google Scholar 

  17. A. Ledwith and D. C. Sherrington, “Stable organic salts: Ion-pair equilibria and their use in cationic polymerization,” Adv. Polym. Sci., 19, 1–56 (1975).

    Article  CAS  Google Scholar 

  18. K. Matyjaszewski, S. Slomkowski, and S. Penczek, “Kinetics and mechanism of the cationic polymerization of tetrahydrofuran in solution: THF—CH2C12 and THF—CH2C12/CH3NO2 systems,” J. Polym. Sci., Polym. Chem. Ed., 17, 2413–2422 (1979).

    Article  CAS  Google Scholar 

  19. K. Matyjaszewski, S. Slomkowski, and S. Penczek, “Kinetics and mechanism of the cationic polymerization of tetrahydrofuran in solution: THF—CH3NO2 system,” J. Polym. Sci., Polym. Chem. Ed., 17, 69–80 (1979).

    Article  CAS  Google Scholar 

  20. K. Brzezinska, K. Matyjaszewski, and S. Penczek, “Macroion pairs and macroions in the kinetics of polymerization of oxepane,” Makromol. Chem., 179, 2387–2395 (1978).

    Article  CAS  Google Scholar 

  21. S. Penczek, P. Kubisa, and K. Matyjaszewski, “Cationic ring-opening polymerization,” Adv. Polym. Sci., 37, 1–149 (1980).

    Article  Google Scholar 

  22. D. W. Grattan and P. H. Plesch, “Binary ionogenic equilibria,” Electroanal. Chem., 103, 81–94 (1979).

    Article  CAS  Google Scholar 

  23. M. Szwarc (editor), Ions and Ion Pairs in Organic Reactions, Inter-science, New York (1972).

    Google Scholar 

  24. V. N. Zgonnik, E. Yu. Melenevskaya, and B. L. Erusalimskii, “The study of active centers in anionic polymerization using spectroscopic and quantum-chemical methods,” Usp. Khim., 47, 1479–1503 (1978).

    CAS  Google Scholar 

  25. S. Bywater, “Spectroscopic studies on the nature of the active centers in anionic polymerization,” J. Polym. Sci., 12, 549–553 (1980).

    CAS  Google Scholar 

  26. A. Andresen, “UV-Spektroskopische Untersuchungen an homogenen Ziegler—Natta Katalysatoren mit Methylalumoxan als Katalysatorkomponente,” Dissertation, Hamburg (1980).

    Google Scholar 

  27. V. M. Sergutin, V. N. Zgonnik, and K. K. Kalnin’sh, “The study of the spectrum of oligopentadienyllithium and its complexes with electron donors,” Vysokomol. Soedin., A22, 415–421 (1980).

    CAS  Google Scholar 

  28. Ch. B. Tsvertanov, I. M. Panayotov, and B. L. Erusalimskii, “Investigation by means of IR spectroscopy of styrene oligomers containing acrylonitrile active ends,” Eur. Polym. J., 10, 557–562 (1974).

    Article  Google Scholar 

  29. Ch. B. Tsvetanov and I. M. Panayotov, “On the nature of the active centers in the initial stages of the methacrylonitrile anionic polymerization — I. Spectral studies,” Eur. Polym. J., 11, 209–214 (1975).

    Article  Google Scholar 

  30. L. Lochmann and J. Trekoval, “Esters of diacids and oligo (carboxylic acid)s (oligomers of methyl methacrylate) substituted in the a-position with an alkali metal. Their stability and IR spectra,” Makromol. Chem., 183, 1361–1370 (1982).

    Article  CAS  Google Scholar 

  31. V. N. Zgonnik, A. A. Davidyan, N. I. Nikolaev, and E. R. Dolinskaya, “On complex formation in polydiethyllithium chains with electron donors in the presence of monomer in a hydrocarbon medium,” Vysokomol. Soedin., A25, 749–754 (1983).

    CAS  Google Scholar 

  32. S. Brownstein, S. Bywater, and D. J. Worsfold, “Allyl alkali metal compounds,” J. Organomet. Chem., 199, 1–8 (1980).

    Article  CAS  Google Scholar 

  33. M. Schlosser and M. Stahle, “Nicht-ebene Strukturen von Allyl und Pentadienylmetall-Verbindungen,” Angew. Chem. Supppl., 198–208 (1982).

    Google Scholar 

  34. M. Schlosser and M. Stähle, “Magnesium, Lithium-and Kaliumverbindungen vom Allyl-Typ: ¶-order a-Strukturen?” Angew. Chem., 92, 497–499 (1980).

    Article  CAS  Google Scholar 

  35. M. Stähle and M. Schlosser, “Neue 13C-spektroskopische Untersuchungen zur Struktur und Allylmetall-Verbindungen,” J. Organo-met. Chem., 220, 277–283 (1981).

    Google Scholar 

  36. P. West, J. I. Purmort, and S. V. McKinley, “The ionic character of allyllithium,” J. Am. Chem. Soc., 90, 797–798 (1968).

    Article  CAS  Google Scholar 

  37. G. Boche, K. Buckle, D. Martens, and D. R. Schneider, “Konformation und Rotationsbarriere bei 1,3-Diphenyllithium Verbindungen,” Ann. Chem., 1135–11771 (1980).

    Google Scholar 

  38. H. U. Siehl and H. Mayr, “Stable vinyl cations. Direct spectroscopic observation of substituted vinyl-cations,” J. Am. Chem. Soc., 104, 909–910 (1982).

    Article  CAS  Google Scholar 

  39. G. Fraenkel, M. I. Geckle, A. Kaylo, and D. W. Estes, “Effects of ligands on ion-pairing behavior of benzylic lithium compounds,” J. Organomet. Chem., 197, 249–259 (1980).

    Article  CAS  Google Scholar 

  40. Y. Firat and S. Bywater, “A 13C-NMR investigation of a dimer anion of a-methylstyrene,” Eur. Polym. J., 18, 265–267 (1982).

    Article  CAS  Google Scholar 

  41. L. Vancea and S. Bywater, “Carbon-13 nuclear magnetic resonance of anion pairs related to acrylate polymerization. 1. Monomericmodels,”Macromolecules, 14, 1321–1323 (1981).

    CAS  Google Scholar 

  42. L. Vancea and S. Bywater, t13C-NMR studies on anion pairs related to acrylate polymerization. 2. Dimer models, “ Macromolecules, 14, 1776–1778 (1981).

    Article  CAS  Google Scholar 

  43. G. Henrici-Olive’ and S. Olive’, “Koordinative Polymerisation and löslichen Ubergangsmetallkatalysatoren,” Adv. Polym. Sci., 6, 421–472 (1969).

    Article  Google Scholar 

  44. G. Fink and R. Rottler, “ethyleninsertion durch lösliche Ziegler Katalysatoren. Direckter Einblick durch reagierendes Ethylen-13C mit Hilfe der13v-NMR Spektroskopie,” Angew. Makromol. Chem., 94, 24–47 (1981).

    Google Scholar 

  45. G. Fink, R. Rottler, and C. G. Kreiter, “Die Primärkomplexbildung in löslishen Ziegler-katalysatorsystemen. Kinetische und thermodinamische baten durch 13C-NMR-Spektroscopie,” Angew. Macromol. Chem., 96, 1–20 (1981).

    Article  CAS  Google Scholar 

  46. G. Olive’ and S. Olive’, Polymerisation. Katalyse-KinetikMechanismen, Verlag Chemie, Weinheim (1969).

    Google Scholar 

  47. G. Henrici-Olive’ and S. Olive’, “Mechanism for Ziegler-Natta Catalysis,” Chemtech.,, 746–752 (1981).

    Google Scholar 

  48. Ch. B. Tsvetanov, Yu. E. Eizner, and B. L. Erusalimskii, “Structure of terminal and penultimate units of a living chain of polyacrylonitrile with lithium counterion. Quantum chemical investigation,” Eur. Polym. J., 16, 219–226 (1980).

    Article  CAS  Google Scholar 

  49. P. A. Berlin, V. L. Lebedev, A. A. Bagatur’yants, and K. S. Kazanskii, “Quantum-chemical modeling of the active centers in the anionic polymerization of ethylene oxide,” Vysokomol. Soedin., A22, 1600–1606 (1980).

    CAS  Google Scholar 

  50. K. S. Kazanskii, “Donor—acceptor and solvation interactions in anionic polymerization of some heterocycles,” Pure Appl. Chem., 53, 1645–1661 (1981).

    CAS  Google Scholar 

  51. Yu. E. Eizner and B. L. Erusalimskii, The Electronic Aspect of Polymerization Reactions [in Russian], Nauka, Leningrad (1976).

    Google Scholar 

  52. I. A. Abronin, K. Ya. Burshtein, and G. M. Zhidomirov, “The quantum chemical determination of the effect of the solvent on the electronic structure and reactivity of the molecules,” Zh. Strukt. Khim., 21, 145–164 (1980).

    CAS  Google Scholar 

  53. Yu. E. Eizner and B. L. Erusalimskii, “The electronic structure and geometry of the anionic centers in anionic polymerization of vinyl monomers,” Eur. Polym. J., 12, 59–63 (1976).

    Article  CAS  Google Scholar 

  54. B. L. Erusalimskii, N. V. Smirnova, N. S. Dmitrieva, and V. N. Zgonnik, “Quantenchemische Untersuchung von Anionisch Aktiven Zentren am Beispiel von Butyl-und Butenyl-Lithium-Verbindungen,” Acta Polym., 31, 357–362 (1980).

    Article  CAS  Google Scholar 

  55. G. B. Erusalimskii and V. A. Kormer, “Quantum-chemical study of the effects of the association phenomenon on the active site structure in butadiene polymerization reactions initiated by organolithium compounds,” Eur. Polym. J., 16, 463–465 (1980).

    Article  CAS  Google Scholar 

  56. G. B. Erusalimskii and V. A. Kormer, “A quantum-chemical study of the structure of the active centers and the mechanism of polymerization of 1,3-dienes under the action of organolithium compounds (on a sample of 1,3-butadiene),” Zh. Vses. Khim.Ova., 26, 266–272 (1981).

    CAS  Google Scholar 

  57. P. H. Plesch, “Cationic polymerization,” Progr. High Polym., 21, 137–188 (1968).

    Google Scholar 

  58. N. Bodor, M. J. S. Dewar, and D. H. Lo, “Ground states of o-bonded molecules. XVIII. An improved version of MINDO/2 and its application to carbonium ions and protonated cyclopropanes,” J. Am. Chem. Soc., 94, 5303–5310 (1972).

    Article  CAS  Google Scholar 

  59. H. L. Hsieh, “Kinetics of polymerization of butadiene, isoprene, and styrene with alkyllithiums. Part II. Rate of initiation,” J. Polym. Sci., A3, 163–172 (1965).

    CAS  Google Scholar 

  60. Yu. E. Eizner and B. L. Erusalimskii, “The electron structure of the active centers of a linear oxonium ion,” Vysokomol. Soedin., Al2, 1614–1620 (1970).

    Google Scholar 

  61. G. B. Erusalimskii, “A quantum-chemical study of the nature of the active centers in the polymerization of butadiene under the action of organolithium compounds,” Dissertation, Leningrad (1981).

    Google Scholar 

  62. A. Bongini, G. Cainelli, G. Cardillo, P. Palmieri, and A. Umani-Ronchi, “A theoretical study of the allyllithium ion pair,” J. Organomet. Chem., 110, 1–6 (1976).

    Article  CAS  Google Scholar 

  63. T. Clark, E. T. Jemmis, P. v. R. Schleyer, J. F. Pinckles, and J. A. Pople, “Ab initio structure of allyllithium,” J. Organo-met. Chem., 150, 1–6 (1978).

    Article  CAS  Google Scholar 

  64. E. T. Tidwell and B. R. Russell, “Electronic structure and bonding of allyllithium,” J. Organomet. Chem., 80, 175–183 (1974).

    Article  CAS  Google Scholar 

  65. J. F. Sebastian, J. R. Grunwell, and B. Hsu, “Electronic structure and geometry of bis(dimethyl ether)allyllithium,” J. Organomet. Chem., 78, C1–C3 (1974).

    Article  CAS  Google Scholar 

  66. S. Bywater and D. J. Worsfold, “Charge distribution in disubstituted allyl-alkylmetal compounds by 13C-NMR,” J. Organomet. Chem., 159, 229–235 (1978).

    Article  CAS  Google Scholar 

  67. N. M. Geller, Yu. E. Eizner, and V. A. Kropachev, “Change in electron structure of cyclic oxides during their interaction with electron acceptors. Quantum-chemical investigation,” Acta Polym., 32, 144–149 (1981).

    Article  CAS  Google Scholar 

  68. N. M. Geller, Yu. E. Eizner, and V. A. Kropachev, “Effect of substituents on the electronic structure of cyclic oxides with an electron acceptor. Quantum-chemical investigation,” Acta Polym., 34, 584–588 (1983).

    Article  CAS  Google Scholar 

  69. G. B. Erusalimskii and V. A. Kormer, “Quantum-chemical study of the effect of butadiene interaction with active sites on the polymer microstructure,” Eur. Polym. J., 16, 467–470 (1980).

    Article  CAS  Google Scholar 

  70. O. Novaro, E. Blaiston-Barojas, E. Clementi, G. Guinchi, and M. E. Ruiz-Vizcaya, “Theoretical study on a reaction of Ziegler—Natta type catalysis,” J. Chem. Phys., 68, 2237–2351 (1978).

    Article  Google Scholar 

  71. B. R. Armstrong, P. G. Perkins, and J. Stewart, “Theoretical investigation of Ziegler—Natta type catalysis. Part I. Soluble catalyst systems,” J. Chem. Soc. Dalton Trans., 1972–1980 (1972).

    Google Scholar 

  72. S. Miertus, O. Kysel, and P. Mâjek, “Quantum-chemical study of the reactivity in anionic polymerization. 1. The effect of the polarity of the medium and alkali-metal cations on the rate of propagation of reaction,” Macromolecules, 12, 418–421 (1979).

    Article  CAS  Google Scholar 

  73. S. Miertus, 0. Kysel, and P. Mâjek, “Quantum-chemical study of the reactivity in anionic polymerization. 2. Effect of electronic structure of monomer on the rate of propagation reaction,” Macromolecules, 12, 421–432 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Consultants Bureau, New York

About this chapter

Cite this chapter

Erusalimskii, B.L. (1986). The Informativeness of Research Methods into Ionic Active Sites. In: Mechanisms of Ionic Polymerization. Macromolecular Compounds. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8392-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8392-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8394-9

  • Online ISBN: 978-1-4684-8392-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics