Skip to main content

Inpurity Monitoring in Liquid Sodium Systems by Electrochemical Oxygen and Hydrogen Monitors

  • Chapter
Material Behavior and Physical Chemistry in Liquid Metal Systems

Abstract

Liquid sodium is used as the coolant in both primary and secondary circuits of the liquid metal fast breeder reactor. The oxygen content of the sodium has a profound effect upon the corrosion of structural materials and upon the tribology of materials pairs. A change in the hydrogen concentration in the sodium can signal excessive water-side corrosion in the steam generators or an oil leak from a pump. Changes in oxygen or hydrogen content in the secondary circuit may also indicate a leak of water into sodium. Thus, oxygen and hydrogen detectors can be used to detect steam generator leaks and are utilized as a part of the steam generator protection system. The performance of electrochemical cells for hydrogen and oxygen under both steady- state and simulated steam generator leak conditions is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Roy and B. E. Bugbee, Nucl.Tech., 39 (7), p. 216, 1978.

    CAS  Google Scholar 

  2. G. J. Licina, P. Roy, H. Nei, A. Kakuta, Second International Conference on Liquid Metal Technology in Energy Production, 1980.

    Google Scholar 

  3. Bureau of Mines Bulletin 542, 1954.

    Google Scholar 

  4. D. L. Smith, Proc. International Conference on Liquid Metal Technology in Energy Production, C0NF 760503-2, p. 631, 1976.

    Google Scholar 

  5. C. A. Smith, BNES Conference on Liquid Alkali Metals, Nottingham, p. 101, 1973.

    Google Scholar 

  6. D. B. Hurd and G. A. Moore, J. Am. Chem. Soc., 57, p. 332, 1955.

    Article  Google Scholar 

  7. A. C. Whittingham, J.Nucl.Mat., 60, p. 119, 1976.

    Article  CAS  Google Scholar 

  8. P. A. Simm and C. A. Smith; unpublished dta, 1980.

    Google Scholar 

  9. J. M. McKee, F. A. Smith, E. R. Koehl, Trans. Am. Nuc. Soc., 33, p. 264, 1979.

    Google Scholar 

  10. F. A. Cafasso, K. M. Myles, A. K. Fischer, International Conference on Liquid Metal Technology in Energy Production CONF 760503-1, p. 191, 1976.

    Google Scholar 

  11. J. M. McKee, CONF 760503-2, p. 494, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Licina, G.J., Roy, P., Smith, C.A. (1982). Inpurity Monitoring in Liquid Sodium Systems by Electrochemical Oxygen and Hydrogen Monitors. In: Borgstedt, H.U. (eds) Material Behavior and Physical Chemistry in Liquid Metal Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8366-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8366-6_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8368-0

  • Online ISBN: 978-1-4684-8366-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics