Skip to main content

The Pairing-Plus-Quadrupole Model

  • Chapter

Abstract

The most successful nuclear models in the correlation of large amounts of diverse nuclear data have been the independent-particle model(1) and the collective model.(2) On the other hand, the more fundamental calculations with the use of the experimental two-body “force” are hard pressed to reproduce nuclear saturation quantitatively, and only recently have serious attempts been made to calculate properties of actual nuclear states on this basis.

Supported by the U.S. Office of Naval Research, Contract Nonr 760(15) NR-024-439.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. G. Mayer and J. H. Jensen, “Nuclear Shell Theory,” John Wiley and Sons, Inc., New York (1955).

    MATH  Google Scholar 

  2. A. Bohr, Kgl. Danske Videnskab. Selskab Mat. Fys. Medd. 26: (14) (1952).

    Google Scholar 

  3. A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab. Selskab Mat. Fys. Medd. 27: (16) (1953).

    Google Scholar 

  4. S. G. Nilsson, Kgl. Danske Videnskab. Selskab Mat. Fys. Medd. 29: (16) (1955).

    Google Scholar 

  5. B. R. Mottelson and S. G. Nilsson, Kgl. Danske Videnskab. Selskab Mat. Fys. Skrifter 1: (8) (1959).

    Google Scholar 

  6. J. P. Elliott, Proc. Roy. Soc. (London) A245: 128–562 (1958).

    ADS  Google Scholar 

  7. A. Bohr, B. R. Mottelson, and D. Pines, Phys. Rev. 110: 936 (1958).

    ADS  Google Scholar 

  8. E. U. Condon and G. H. Shortley, “The Theory of Atomic Spectra,” Cambridge University Press, New York (1957).

    MATH  Google Scholar 

  9. S. T. Belyaev, Kgl. Danske Videnskab. Selskab Mat. Fys. Medd. 31: (11) (1959).

    Google Scholar 

  10. B. R. Mottelson, “Selected Topics in the Theory of Collective Phenomena in Nuclei,” in “Nuclear Spectroscopy” (G. Racah, ed.) Academic Press, New York (1962).

    Google Scholar 

  11. M. Baranger and K. Kumar, “The Calculation of Nuclear Deformations,” in “Perspectives in Modern Physics” (R. E. Marshak, ed.) Wiley-Interscience, New York (1966); also Nucl. Phys. A110: 490 (1968).

    Google Scholar 

  12. R. A. Uher and R. A. Sorensen, Nuc. Phys. 86: 1 (1966).

    Google Scholar 

  13. E. R. Marshalek, Phys. Rev. 139: B770 (1965).

    ADS  MathSciNet  Google Scholar 

  14. E. R. Marshalek, Phys. Rev. 158: 993 (1967).

    ADS  Google Scholar 

  15. E. R. Marshalek, Phys. Rev. Letters 20: 214 (1968).

    ADS  Google Scholar 

  16. K. Kumar and M. Baranger, Nucl. Phys. A110: 529 (1968).

    Google Scholar 

  17. L. S. Kisslinger and R. A. Sorensen, Kgl. Danske Videnskab. Selskab Mat. Fys. Medd. 32: (9) (1960).

    Google Scholar 

  18. D. Bes, Kgl. Danske Videnskab. Selskab Mat. Fys. Medd. 33: (2) (1961).

    Google Scholar 

  19. D. Bes and Z. Szymanski, Nucl. Phys. 28: 42 (1961).

    Google Scholar 

  20. Z. Szymanski, Nucl. Phys. 28: 63 (1961).

    Google Scholar 

  21. S. G. Nilsson and O. Prior, Kgl. Danske Videnskab. Selskab Mat. Fys. Medd. 32: (16) (1961).

    Google Scholar 

  22. G. E. Brown and T. T. S. Kuo, Nucl. Phys. A92: 481 (1967).

    Google Scholar 

  23. E. Jakeman and S. A. Moszkowski, Phys. Rev. 141: 933 (1966).

    ADS  Google Scholar 

  24. G. Racah, Physica 18: 1097 (1952).

    ADS  Google Scholar 

  25. B. R. Mottelson, “Cours de l’École d’Été de Physique Théorique des Houches 1958,” Dunod, Paris (1959).

    Google Scholar 

  26. A. K. Kerman, Ann. Phys. (N.Y.) 12: 300 (1961).

    ADS  Google Scholar 

  27. R. D. Lawson and M. H. Macfarlane, Nucl. Phys. 66: 80 (1965).

    Google Scholar 

  28. A. K. Kerman, R. D. Lawson, and M. H. Macfarlane, Phys. Rev. 124: 162 (1961).

    ADS  Google Scholar 

  29. R. W. Richardson, Phys. Rev. 141: 949 (1966).

    ADS  Google Scholar 

  30. J. Bardeen, L. Cooper, and R. Schrieffer, Phys. Rev. 108: 1175 (1957).

    ADS  MathSciNet  Google Scholar 

  31. J. Högaasen Feldman, Nuci. Phys. 28: 258 (1961).

    Google Scholar 

  32. I. Unna and J. Weneser, Phys. Rev. 137: B1455 (1965).

    ADS  Google Scholar 

  33. M. Rho, Nuci. Phys. 75: 481 (1966).

    Google Scholar 

  34. B. Sorensen, Nucl. Phys. A97: 1 (1967).

    Google Scholar 

  35. B. Bayman, Nucl. Phys. 15: 33 (1960).

    MathSciNet  Google Scholar 

  36. I. N. Michailov, Soviet Phys. JETP (English Transi.) 18: 761 (1964).

    Google Scholar 

  37. Y. Nogami, Phys. Rev. 134: B313 (1964).

    ADS  Google Scholar 

  38. Y. Nogami and I. J. Zucker, Nucl. Phys. 60: 203 (1964).

    Google Scholar 

  39. H. Mang, J. K. Poggenburg, and J. O. Rasmussen, Nuci. Phys. 64: 353 (1965).

    Google Scholar 

  40. H. J. Mang, J. O. Rasmussen, and M. Rho, Phys. Rev. 141: 941 (1966).

    ADS  Google Scholar 

  41. A. Lande, Ann. Phys. (N.Y.) 31: 525 (1965).

    ADS  Google Scholar 

  42. S. G. Nilsson, Nucl. Phys. 55: 97 (1964).

    Google Scholar 

  43. J. Bang, J. Krumlinde, and S. G. Nilsson, Phys. Letters 15: 85 (1965).

    ADS  Google Scholar 

  44. J. Bang, J. Krumlinde, and S. G. Nilsson, Phys. Letters 20: 661 (1966).

    ADS  Google Scholar 

  45. R. R. Chasman, Phys. Rev. 132: 343 (1963).

    ADS  Google Scholar 

  46. R. R. Chasman, Phys. Rev. 134: B279 (1964).

    ADS  Google Scholar 

  47. R. R. Chasman, Phys. Rev. 138: B326 (1965).

    ADS  Google Scholar 

  48. R. R. Chasman, Phys. Rev. 156: 1197 (1967).

    ADS  Google Scholar 

  49. S. Wahlborn, Arkiv. Fysik 31: 33–319 (1966).

    Google Scholar 

  50. G. Do Dang and A. Klein, Phys. Rev. 143: 735 (1966).

    ADS  Google Scholar 

  51. G. Do Dang and A. Klein, Phys. Rev. 147: 689 (1966).

    ADS  Google Scholar 

  52. K. Hara, Nucl. Phys. A95: 385 (1967).

    Google Scholar 

  53. A. Covello and E. Salusti, to be published.

    Google Scholar 

  54. A. P. Zuker, Nucl. Phys. A106: 641 (1968).

    Google Scholar 

  55. N. N. Bogolubiov, Soviet Phys. JETP, 34: 58–73 (1958).

    Google Scholar 

  56. N. N. Bogolubiov, Nuovo Cimento 7: 794 (1958).

    Google Scholar 

  57. J. G. Valatin, Nuovo Cimento 7: 843 (1958).

    Google Scholar 

  58. L. S. Kisslinger and R. A. Sorensen, Rev. Mod. Phys. 35: 853 (1963).

    ADS  Google Scholar 

  59. B. Bayman, “Seniority, Quasi-Particles and Collective Vibrations,” lectures given in the Palmer Physical Laboratory, Princeton University (1960), unpublished notes.

    Google Scholar 

  60. C. Monsonego and R. Piepenbring, Nuci. Phys. 58: 593 (1964).

    Google Scholar 

  61. M. N. Vergnes and J. O. Rasmussen, Nucl. Phys. 62: 233 (1965).

    Google Scholar 

  62. M. Sakai and S. Yoshida, Nucl. Phys. 50: 497 (1964).

    Google Scholar 

  63. V. G. Soloviev, Kgl. Danske Videnskab. Selskab Mat. Fys. Skrifter, 1: (11) (1961).

    Google Scholar 

  64. S. Yoshida, Nucl. Phys. 33: 685 (1962).

    Google Scholar 

  65. V. G. Soloviev, Phys. Letters 1: 202 (1962).

    ADS  Google Scholar 

  66. H. J. Mang and J. O. Rasmussen, Kgl. Mat. Fys. Skrifter Danske Videnskab. Selskab 2: (3) (1962).

    Google Scholar 

  67. J. H. Bjerregaard, O. Hansen, O. Nathan, R. Chapman, S. Hinds, and R. Middleton, Nucl. Phys. A103: 33 (1967).

    Google Scholar 

  68. G. Bassani, J. R. Maxwell, G. Reynolds, and N. M. Hintz, Paper presented at In- ternational Conference on Nuclear Physics, Éditions DU C.N.R.S. Paris (1964).

    Google Scholar 

  69. B. Bayman and N. Hintz, Phys. Rev. 172: 1113 (1968).

    ADS  Google Scholar 

  70. G. F. Bertsch, R. A. Broglia, and C. Riedel, Nucl. Phys. A91: 123 (1967).

    Google Scholar 

  71. R. A. Broglia and C. Riedel, Nucl. Phys. A92: 145 (1967).

    Google Scholar 

  72. A. Sandulescu and O. Dimitrescu, Phys. Letters 19: 405 (1965).

    ADS  Google Scholar 

  73. A. B. Migdal, Nucl. Phys. 13: 655 (1959).

    Google Scholar 

  74. J. Blatt, Progr. Theoret. Phys. (Kyoto) 24: 851 (1960).

    ADS  Google Scholar 

  75. R. E. Prange, Nucl. Phys. 22: 283 (1961).

    Google Scholar 

  76. A. Katz, Nucl. Phys. 26: 129 (1961).

    Google Scholar 

  77. S. T. Belyaev, Nucl. Phys. 24: 322 (1961).

    Google Scholar 

  78. D. J. Thouless and J. G. Valatin, Nucl. Phys. 31: 211 (1962).

    Google Scholar 

  79. S. T. Belyaev, in “Selected Topics in Nuclear Theory,” International Atomic Energy Agency, Vienna (1963), p. 291.

    Google Scholar 

  80. S. T. Belyaev, Soviet J. Nucl. Phys. 4: 671 (1967).

    Google Scholar 

  81. J. P. Elliott, in “Selected Topics in Nuclear Theory,” International Atomic Energy Agency, Vienna (1963), p. 157.

    Google Scholar 

  82. M. Harvey, in “Advances in Nuclear Physics,” Vol. 1 (M. Baranger and E. Vogt, eds.), Plenum Press, New York (1968), p. 67.

    Google Scholar 

  83. B. F. Bayman, “Comptes rendus du congrès international de physique nucléaire, Paris,” Dunod, Paris (1958), p. 710.

    Google Scholar 

  84. G. Ripka, in “Advances in Nuclear Physics,” Vol. 1 (M. Baranger and E. Vogt, eds.), Plenum Press, New York (1968) p. 183.

    Google Scholar 

  85. M. R. Gunye and S. Das Gupta, Nucl. Phys. 89: 443 (1966).

    Google Scholar 

  86. T. D. Newton, Can. J. Phys. 38: 700 (1960).

    ADS  Google Scholar 

  87. S. Das Gupta and M. A. Preston, Nucl. Phys. 49: 401 (1963).

    Google Scholar 

  88. C. Gustafson, I. L. Lamm, B. Nilsson, and S. G. Nilsson, Arkiv Fysik 36: 613 (1967).

    Google Scholar 

  89. J. Griffin, Phys. Rev. 132: 2204 (1963).

    ADS  Google Scholar 

  90. W. Stepien and Z. Szymanski, Phys. Letters 26B: 181 (1968).

    ADS  Google Scholar 

  91. J. G. Valatin, Proc. Roy. Soc. (London) 238A: 132 (1956).

    ADS  Google Scholar 

  92. J. G. Valatin, “Lectures on Theoretical Physics,” Vol. 4, Interscience Publishers, Inc., New York (1962).

    Google Scholar 

  93. J. J. Griffin and M. Rich, Phys. Rev. Letters 3: 342 (1959).

    ADS  Google Scholar 

  94. J. J. Griffin and M. Rich, Phys. Rev. 118: 850 (1960).

    ADS  Google Scholar 

  95. A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab. Selskab Mat. Fys. Medd. 30: (1) (1955).

    Google Scholar 

  96. B. R. Mottelson and J. G. Valatin, Phys. Rev. Letters 5: 511 (1960).

    ADS  Google Scholar 

  97. K. Y. Chan and J. G. Valatin, Nucl. Phys. 82: 222 (1966).

    Google Scholar 

  98. K. Y. Chan, Nucl. Phys. 85: 261 (1966).

    Google Scholar 

  99. M. Sano and M. Wakai, Nucl. Phys. A97: 298 (1967).

    Google Scholar 

  100. T. Udagawa and R. K. Sheline, Phys. Rev. 147: 671 (1966).

    ADS  Google Scholar 

  101. D. R. Bes, S. Landowne, and M. Mariscotti, Phys. Rev. 166: 1045 (1968).

    ADS  Google Scholar 

  102. R. Arvieu and M. Veneroni, Compt. Rend. 250: 992–2155 (1960).

    Google Scholar 

  103. M. Baranger, Phys. Rev. 120: 957 (1960).

    ADS  Google Scholar 

  104. M. Kobayasi and T. Marumori, Progr. Theoret. Phys. (Kyoto) 23: 387 (1960).

    ADS  Google Scholar 

  105. T. Marumori, Progr. Theoret. Phys. (Kyoto) 24: 331 (1960).

    ADS  Google Scholar 

  106. D. J. Thouless, Nucl. Phys. 21: 225 (1960).

    MathSciNet  Google Scholar 

  107. D. J. Thouless, Nucl. Phys. 22: 78 (1961).

    MathSciNet  Google Scholar 

  108. R. A. Sorensen, Nucl. Phys. 25: 674 (1961).

    Google Scholar 

  109. J. deBoer and J. Eichler, in “Advances in Nuclear Physics,” Vol. 1 (M. Baranger and E. Vogt, eds.), Plenum Press, New York (1968), p. 1.

    Google Scholar 

  110. E. R. Marshalek and J. O. Rasmussen, Nucl. Phys. 43: 438 (1963).

    Google Scholar 

  111. V. G. Soloviev, Atomic Energy Review 3: 117 (1965).

    Google Scholar 

  112. D. Bes, Nucl. Phys. 49: 544 (1963).

    Google Scholar 

  113. D. Bes, P. Federman, E. Maqueda, and A. P. Zuker, Nucl. Phys. 65: 1 (1965).

    Google Scholar 

  114. S. T. Belyaev and V. G. Zelevinsky, Nucl. Phys. 39: 582 (1962).

    Google Scholar 

  115. T. Marumori, M. Yamamura, and A. Tokunaga, Progr. Theoret. Phys. (Kyoto) 31: 1009 (1964).

    ADS  Google Scholar 

  116. T. Marumori, M. Yamamura, A. Tokunaga, and N. Takada, Progr. Theoret. Phys. (Kyoto) 32: 726 (1964).

    ADS  Google Scholar 

  117. J. DaProvidenca, Nucl. Phys. 83: 209 (1966).

    Google Scholar 

  118. B. Sorensen, Nucl. Phys. A97: 1 (1967).

    Google Scholar 

  119. G. Do Dang and A. Klein, Phys. Rev. 133: B257 (1964).

    ADS  Google Scholar 

  120. Do Dang and A. Klein, Phys. Rev. 156: 1159 (1967).

    ADS  Google Scholar 

  121. R. M. Dreizier, A. Klein, C. S. Wu, and G. Do Dang, Phys. Rev. 156: 1167 (1967).

    ADS  Google Scholar 

  122. M. Baranger and K. Kumar, Nucl. Phys. 92: 608 (1967).

    Google Scholar 

  123. M. Baranger and K. Kumar, Phys. Rev. Letters 11: 1146 (1966).

    Google Scholar 

  124. V. G. Soloviev and P. Vogel, Nucl. Phys. A92: 449 (1967).

    Google Scholar 

  125. D. R. Bes and Y. Cho, Nucl. Phys. 86: 581 (1966).

    Google Scholar 

  126. R. A. Sorensen, Phys. Rev. 133: B2811 (1964).

    Google Scholar 

  127. L. S. Kisslinger and K. Kumar, Phys. Rev. Letters 19: 1239 (1967).

    ADS  Google Scholar 

  128. R. A. Sorensen, Phys. Letters 21: 333 (1966).

    ADS  Google Scholar 

  129. H. Schmidt, Z. Physik 181: 532 (1964).

    ADS  Google Scholar 

  130. D. R. Bes and R. A. Broglia, Nucl. Phys. 80: 290 (1966).

    Google Scholar 

  131. J. H. Bjerregaard, O. Hansen, O. Nathan, and S. Hinds, Nucl. Phys. 89: 337 (1966).

    Google Scholar 

  132. G. M. Reynolds, J. R. Maxwell, and N. M. Hintz, Phys. Rev. 153: 1283 (1967).

    ADS  Google Scholar 

  133. N. Glendenning, Phys. Rev. 156: 1344 (1967).

    ADS  Google Scholar 

  134. W. W. True and K. W. Ford, Phys. Rev. 109: 1675 (1958).

    ADS  Google Scholar 

  135. L. S. Kisslinger, Nucl. Phys. 35: 114 (1962).

    Google Scholar 

  136. J. A. Halbleib and R. A. Sorensen, Nucl. Phys. A98: 542 (1967).

    Google Scholar 

  137. N. Fried and L. S. Kisslinger, Nucl. Phys. 25: 611 (1961).

    Google Scholar 

  138. A. A. Kuliev and L Pyatov, Nucl. Phys. A106: 699 (1968).

    Google Scholar 

  139. R. Arvieu, E. Baranger, E. Veneroni, M. Baranger, and V. Gillet, Phys. Letters 4: 119 (1963).

    ADS  Google Scholar 

  140. R. Arvieu and M. Veneroni, Phys. Letters 5: 142 (1963).

    ADS  Google Scholar 

  141. H. J. Mang, J. K. Poggenburg, and J. O. Rasmussen, Nucl. Phys. 64: 353 (1965).

    Google Scholar 

  142. E. U. Baranger, M. Baranger, and T. S. Kuo, Nucl. Phys, 81: 241 (1966).

    Google Scholar 

  143. D. M. Clement and E. U. Baranger, Nucl. Phys. 89: 145 (1966).

    Google Scholar 

  144. R. Arvieu and E. Salusti, Nucl. Phys. 66: 305 (1965).

    Google Scholar 

  145. A. R. Edmonds, “Angular Momentum in Quantum Mechanics,” Princeton University Press Princeton, N. J. (1957).

    MATH  Google Scholar 

  146. H. J. Lipkin and S. Goldstein, Nucl. Phys. 5: 202 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Plenum Press

About this chapter

Cite this chapter

Bes, D.R., Sorensen, R.A. (1969). The Pairing-Plus-Quadrupole Model. In: Baranger, M., Vogt, E. (eds) Advances in Nuclear Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-8343-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8343-7_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-8345-1

  • Online ISBN: 978-1-4684-8343-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics