Skip to main content

Chemical Germplasm Investigations in Soybeans: The Flotsam Hypothesis

  • Chapter
The Resource Potential in Phytochemistry

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 14))

  • 101 Accesses

Abstract

The genus Glycine Willd. is currently divided into two subgenera Glycine and Soja (Moench) F. J. Herm.1 The subgenus Soja includes the soybean, G. max (L.) Merr. and its closest relative, the wild soybean, G. soja Sieb. and Zucc. (Table 1.). The wild soybean is found in open fields, hedgerows, along roadsides and riverbanks in the Republic of China, adjacent areas of the USSR (Primorskiy and Khaborovsk Kray), Korea, Japan and Taiwan.2 Both G. max and G. soja are diploids (2n=40).3–10 Evidence gather from cytogenetic, morphological and seed protein studies suggest that the two species are conspecific11–16 and supports the hypothesis that G. soja is the wild ancestor of the cultivated soybean.3,4 There are few, if any, cytogenetic barriers to hybridization between the two species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hymowitz, T., C.A. Newell. (n.d.) In: (R.J. Summerfield,ed.) Advances in Legume Science.Royal Botanic Garden, Kew.

    Google Scholar 

  2. Herman, F.J. 1962. A revision of the genus Glycine and its immediate allies. USDA Techn. Bull. 1268: 1–79.

    Google Scholar 

  3. Hadley, H.H., T. Hymowitz. 1973. In (B.E. Caldwell, ed.) Soybeans: Improvement, Production and Uses. Amer. Soc. of Agron. ( Madison, WI ) Chapter 3.

    Google Scholar 

  4. Fukada, Y. 1933. Cyto-genetical studies on the wild and cultivated Manchurian soybeans (Glycine L.) Jap. J. Bot. 6: 489–506.

    Google Scholar 

  5. Karasawa, K. 1936. Crossing experiments with Glycine soja and G. ussuriensis. Jap. J. Bot. 8: 113–118.

    Google Scholar 

  6. Karpenchenko, G.D. 1925. On the chromosomes of the Phaseolinae. Bull. Appl. Bot. and Plant Breeding (Leningrad) 14:143–148.

    Google Scholar 

  7. Kawakami, J. 1930. Chromosome numbers in Leguminosae. Bot. Mag., Tokyo, 44: 319.

    Google Scholar 

  8. Veatch, C. 1934. Chromosomes of the soybean. Bot. Gaz. 96: 189.

    Article  Google Scholar 

  9. Tschechow, W., N. Kartaschowa. 1932. Karyologischsystematische untersuchung der tribus Loteae and Phaseoleae. Unterfam. Papilionatae. CytóT6gia 3: 221–249.

    Google Scholar 

  10. Newell, C.A., T. Hymowitz. 1978. Seed coat variation in Glycine Willd. subgenus Glycine (Leguminosae) by SEM. Brittonia 30: 76–88.

    Article  Google Scholar 

  11. Lu, Y.C. 1966. Studies on the morphology, physiology and cytogenetics of cultivated, semi-cultivated and wild soybeans. J. Agr. Forest 15: 1–23.

    Google Scholar 

  12. Mies, D.W., T. Hymowitz. 1973. Comparative electrophoretic studies of trypsin inhibitors in seed of the genus Glycine. Bot. Gaz. 134: 121–125.

    Article  CAS  Google Scholar 

  13. Tang, W.T., C.H. Chen. 1959. Preliminary studies on the hybridization of the cultivated and wild bean [Glycine max Merrill and G. formosana (Hosokawa)]. J. Agr. Ass. China N.S.

    Google Scholar 

  14. Tang, W.T., G. Tai. 1962. Studies on the qualitative and quantitative inheritance of an interspecific cross of soybean, Glycine max x G. formosana. Bot. Bull. Acad. Sinica 3: 39–54.

    Google Scholar 

  15. Ting, C.L. 1946. Genetic studies on the wild and cultivated soybeans. J. Amer. Soc. Agron. 38: 381–393.

    Article  Google Scholar 

  16. Weber, C.R. 1950. Inheritance and interrelation of some agronomic and chemical characters in an interspecific cross in soybeans, Glycine max x G. ussuriensis. Iowa Agr. Exp. Sta. Res BuTr 37: 767–816.

    Google Scholar 

  17. Hymowitz, T. 1970. On the domestication of the soybean. Econ. Bot. 24: 408–421.

    Article  Google Scholar 

  18. Hymowitz, T., R.G. Palmer, H.H. Hadley. 1972. Seed weight, protein, oil and fatty acid relationships within the genus Glycine. Trop. Agric. (Trinidad) 49: 245–250.

    CAS  Google Scholar 

  19. Harlan, J.R. 1967. A wild wheat harvest in Turkey. Archaeology 20: 197–201.

    Google Scholar 

  20. Harlan, J.R. 1976. Genetic resources in wild relatives of crops. Crop Sci. 16: 329–333.

    Article  Google Scholar 

  21. Brim, C.A. 1973. In: (B.E. Caldwell, ed.) Soybeans: Improvement, Prodcuction and Uses. Amer. Soc. of Agron. ( Madison, WI ), Chapter 5.

    Google Scholar 

  22. Osborne, T.B., L.B. Mendel. 1917. The use of soybean as feed. J. Biol. Chem. 32: 369–377.

    CAS  Google Scholar 

  23. Borchers, R., C.W. Anderson, F.E. Mussehl, A. Moehl. 1948. Trypsin inhibitors. VIII. Growth inhibiting properties of a soybean trypsin inhibitor. Arch. Biochem. 19: 317–322.

    PubMed  CAS  Google Scholar 

  24. Westfall, R.J., S.M. Hauge. 1948. The nutritive quality and the trypsin inhibitor content of soybean flour heated at various temperatures. J. Nutr. 35: 379–389.

    PubMed  CAS  Google Scholar 

  25. Rackis, J.J., R.L. Anderson. 1964. Isolation of four soybean trypsin inhibitors by DEAE-cellulose chromatography. Biochem. Biophys. Res. Commun. 15: 230–235.

    Article  PubMed  CAS  Google Scholar 

  26. Rackis, J.J., H.A. Sasame, R.K. Mann, R.L. Anderson, A.K. Smith. 1962. Soybean trypsin inhibitors: Isolation, purification and physical properties. Arch. Biochem. Biophys. 98: 471–478.

    Article  CAS  Google Scholar 

  27. Rackis, J.J. 1965. Physiological properties of soybean trypsin inhibitors and their relationships to pancreatic hypertrophy and growth inhibition of rats. Feder. Proc. 24: 1488–1493.

    CAS  Google Scholar 

  28. Kakade, M.L., D.E. Hoffa, I.E. Liener. 1973. Contribution of trypsin inhibitors to the deleterious effects of unheated soybeans fed to rats. J. Nutr. 103: 1772–1778.

    PubMed  CAS  Google Scholar 

  29. Bray, D.J. 1964. Pancreatic hypertrophy in layering pellets induced by unheated soybean meal. Poultry Sci. 43: 382–384.

    Article  Google Scholar 

  30. Chernick, S.S., S. Lepkovsky, I.L. Chaikoff. 1948. A dietary factor regulating the enzyme content of the pancreas. Changes induced in size and proteolytic activity of the chick pancreas by the ingestion of raw soybean meal. Am. J. Physiol. 155: 33–41.

    PubMed  CAS  Google Scholar 

  31. Liener, I.E., M.L. Kakade. 1969. In: ( I. E. Liener, ed.) Toxic Constituents of Plant Foodstuffs, Academic Press (few York), Chapter 2.

    Google Scholar 

  32. Rackis, J.J. 1972. In (A.K. Smith and S.J. Circle, eds.) Soybeans, Clemistry and Technology, Vol. 1, AVI Publ. Co. Inc. ( Westport, CT ), Chapter 6.

    Google Scholar 

  33. Booth, A.W., A.J. Robbins, W.E. Rebelin, F.D. (eds.) 1960. Effect of raw soybean meal and amino acids on pancreatic hypertrophy in rats. Proc. Soc. Exptl. Biol. Med. 104:681–683.

    CAS  Google Scholar 

  34. Bowman, D.E. 1944. Fractions derived from soybeans and navy beans which retard the tryptic digestion of casein. Proc. Soc. Exptl. Biol. Med. 57: 139–140.

    CAS  Google Scholar 

  35. Eldridge, A.C., R.L. Anderson, W.J. Wolf. 1966. Polyacrylamide gel electrophoresis of soybean whey proteins and trypsin inhibitors. Arch. Biochem. Biophys. 115: 495–504.

    Article  PubMed  CAS  Google Scholar 

  36. Frattali, V., R.F. Steiner. 1968. Soybean inhibitors. I. Separations and some properties of three inhibitors from commercial crude soybean trypsin inhibitor. Biochem. 7: 521–530.

    Article  CAS  Google Scholar 

  37. Kunitz, M. 1945. Crystallization of a soybean trypsin inhibitor from soybean. Science 101: 668–669.

    Article  PubMed  CAS  Google Scholar 

  38. Birk, Y. 1961. Purification and some properties of a highly active inhibitor of trypsin and chymotrypsin from soybeans. Biochem. Biophys. Acta 54: 378–381.

    Article  PubMed  CAS  Google Scholar 

  39. Yamamoto, M., T. Ikenaka. 1967. Studies on soybean trypsin inhibitors. I. Purification and characterization of two soybean trypsin inhibitors. J. Biochem. (Tokyo) 62: 141–149.

    CAS  Google Scholar 

  40. Koide, T., T. Ikenada. 1973. Studies on soybean trypsin inhibitors: 3. Amino-acid sequence of the carboxyl-terminal region and the complete amino-acid sequence of soybean trypsin inhibitor (Kunitz). Eur. J. Biochem. 32: 417–431.

    Article  PubMed  CAS  Google Scholar 

  41. Hymowitz, T. 1973. Electrophoretic analysis of SBTI-A2 in the USDA soybean germplasm collection. Crop Sci. 13: 420–421.

    Article  Google Scholar 

  42. Hymowitz, T., J.H Orf, N. Kaizuma, H. Skorupska. 1978. Screening the USDA soybean germplasm collection for Kunitz trypsin inhibitor mutants. Soybean Genet. Newsl. 5: 19–22.

    Google Scholar 

  43. Clark, R.W., D.W. Mies, T. Hymowitz. 1970. Distribution of a trypsin inhibitor variant in seed proteins of soybean varieties. Crop Sci. 10: 486–487.

    Article  Google Scholar 

  44. Hymowitz, T., D.W. Mies, C.J. Klebek. 1971. Frequency of a trypsin inhibitor variant in seed protein of four soybean populations. East Afr. Agr. For. J. 37: 62–72.

    Google Scholar 

  45. Orf, J.H. 1976. Electrophoretic studies on seed proteins of Glycine max (L.) Merrill. M.S. Thesis, University of Illinois, Urbana.

    Google Scholar 

  46. Skorupska, H., T. Hymowitz. 1977. On the frequency distribution of alleles of two seed proteins in European soybean [Glycine max (L.) Merrill] germplasm: Implications on fhe origin of European soybean germplasm. Genetica Polonica 18: 217–224.

    Google Scholar 

  47. Singh, L., C.M. Wilson, H.H. Hadley. 1969. Genetic differences in soybean trypsin inhibitors separated by disc electrophoresis. Crop Sci. 9: 489–491.

    Article  CAS  Google Scholar 

  48. Orf, J.H., T. Hymowitz. 1979. Inheritance of the absence of the Kunitz trypsin inhibitor in seed protein of soybeans. Crop Sci. 19: 107–109.

    Article  CAS  Google Scholar 

  49. Hymowitz, T., H.H. Hadley. 1972. Inheritance of a trypsin inhibitor variant in seed protein of soybeans. Crop Sci. 12: 197–198.

    Article  CAS  Google Scholar 

  50. Orf, J.H., T. Hymowitz. 1977. Inheritance of a second trypsin inhibitor variant in seed protein of soybeans. Crop Sci. 17: 811–813.

    Article  CAS  Google Scholar 

  51. Hwang, D.L., W.K. Yang, D.E. Foard, K.T. Davis Lin. 1978. Rapid release of protease inhibitors from soybeans. Immuno-chemical quantitative and parallels with lectins. Plant Physiol. 61: 30–34.

    Article  PubMed  CAS  Google Scholar 

  52. Hildebrand, D.F., J.H. Orf, T. Hymowitz. 1980. Inheritance of an acid phosphatase and its linkage with the Kunitz trypsin inhibitor in seed protein of soybeans. Crop Sci. 20 (in press).

    Google Scholar 

  53. Jaffe, W.G. 1969. In: (I.E. Liener, ed.) Toxic Constituents of Plant 1–âodstuffs, Academic Press (New York ) Chapter 3.

    Google Scholar 

  54. Weinhaus, O. 1909. Zur biochemic des phasins. Biochemische Zeitschrift 18: 228–260.

    Google Scholar 

  55. Liener, I.E., M.J. Pallansch. 1952. Purification of a toxic substance from defatted soybean meal. J. Biol. Chem. 197: 29–36.

    PubMed  CAS  Google Scholar 

  56. Catsimpoolas, M., E.W. Meyer. 1969. Isolation of soybean hemagglutinin and demonstration of multiple forms by isoelectric focusing. Arch. Biochem. Biophys. 132: 279–285.

    Article  PubMed  CAS  Google Scholar 

  57. Fountain, D.W., W. Yang. 1977. Isolectins from soybean (Glycine max) Biochem. Biophys. Acta 492: 176–185.

    CAS  Google Scholar 

  58. Lis, H., C. Fridman, N. Sharon, E. Katchalski. 1966. Multiple hemagglutinins in soybean. Arch. Biochem. Biophys. 117: 301–309.

    Article  PubMed  CAS  Google Scholar 

  59. Rackis, J.J., H.A. Sasame, R.L. Anderson, A.K. Smith. 1959. Chromatography of soybean whey proteins on diethylaminoethylcellulose. J. Am. Chem. Soc. 81: 6265–6270.

    Article  CAS  Google Scholar 

  60. Stead, R.H., H.J.H. DeMuelenaere, G.V. Quicke. 1966. Trypsin inhibitor, hemagglutination and intraperitoneal toxicity in extracts of Phaseolus vulgaris and Glycine max. Arch. Biochem. Biophys. 113: 703–708.

    Article  PubMed  CAS  Google Scholar 

  61. Liener, I.E., J.E. Rose. 1953. Soyin, a toxic protein from the soybean. III. Immunochemical properties. Proc. Soc. Exptl. Biol. Med. 83: 539–544.

    CAS  Google Scholar 

  62. Lotan, R., H.W. Siegelman, H. Lis, N. Sharon. 1974. Subunit structure of soybean agglutinin. J. Biol. Chem. 249: 1219–1224.

    PubMed  CAS  Google Scholar 

  63. Lotan, R., R. Cacan, M. Cacan, H. Debray, W.G. Carter, N. Sharon. 1975. On the presence of two types of subunit in soybean agglutinin. Fed. Europ. Biochem. Soc. Lett. 75: 100–103.

    Article  Google Scholar 

  64. Lis, H., B. Sela, L. Sachs, N. Sharon. 1970. Specific inhibition by N-acetyl-D-galactosamine of the interaction between soybean agglutinin and animal cell surfaces. Biochem. Biophys. Acta. 211: 582–585.

    Article  PubMed  CAS  Google Scholar 

  65. Pull, S.P. 1978. An analysis of soybean lectin content in the seeds of 51 lines of Glycine max (L.) Merr. M.S. Thesis, University ofMlssouri,t. Louis.

    Google Scholar 

  66. Orf, J.H. 1979. Genetic and nutritional studies of seed lectin, Kunitz trypsin inhibitor, and other proteins of soybean [Glycine max (L.) Merrill]. Ph.D. Dissertation, erse ÿ of Illinois, Urbana.

    Google Scholar 

  67. Pull, S.P., S.G. Pueppke, T. Hymowitz, J.H. Orf. 1978. Screening soybeans for lectin content. Soybean Genet. Newsl. 5: 66–70.

    Google Scholar 

  68. Pull, S.P., S.G. Pueppke, T. Hymowitz, J.H. Orf. 1978. Soybean lines lacking the 120,000 dalton seed lectin. Science 200: 1277–1279.

    Article  PubMed  CAS  Google Scholar 

  69. Orf, J.H., T. Hymowitz, S.P. Pull, S.G. Pueppke. 1978. Inheritance of a soybean seed lectin. Crop Sci. 18: 899–900.

    Article  CAS  Google Scholar 

  70. Liener, I.E. 1953. Soyin, a toxic protein from the soybean. I. Inhibition of rat growth. J. Nutr. 49: 527–539.

    PubMed  CAS  Google Scholar 

  71. Bahlool, B.B., E.L. Schmidt. 1974. Lectins: a possible basis for specificity in the Rhizobium-legume root nodule symbiosis. Science 185: 269–271.

    Article  Google Scholar 

  72. Bhuvaneswari, T.V., S.G. Pueppke, W.D. Bauer. 1977. Binding of soybean lectin to rhizobia. Plant Physiol. 60: 486–491.

    Article  PubMed  CAS  Google Scholar 

  73. Bahlool, B.B., E.L. Schmidt. 1976. Immunofluorescent polar tips of Rhizobium japonicum: possible site of attachment of lectin binding. J. Bacteriol. 125: 1188–1194.

    Google Scholar 

  74. Kauss, H., C. Glaser. 1974. Carbohydrate binding proteins from plant cell walls and their possible involvement in extension growth. FEBS Letters 45: 304–307.

    Article  PubMed  CAS  Google Scholar 

  75. Reporter, M., D. Raveed, G. Norris. 1975. Binding of Rhizobium japonicum to cultured soybean cell roots: morphological evidence. Plant Sci. Lett. 5: 73–76.

    Article  Google Scholar 

  76. Liener, I.E. 1974. Phytohemagglutinins: their nutritional significance. J. Agric. Food Chem. 22: 17–23.

    Article  PubMed  CAS  Google Scholar 

  77. Janzen, D.H., H.B. Juster, I.E. Liener. 1976. Insecticidal action of the phytohemagglutinin in black beans on a bruchid beetle. Science 192: 795–796.

    Article  PubMed  CAS  Google Scholar 

  78. Mirelman, D., E.E. Galun, N. Sharon, R. Lotan. 1975. Inhibition of fungal growth by wheat germ agglutinin. Nature 256: 414–416.

    Article  PubMed  CAS  Google Scholar 

  79. Birk, Y., A. Gertler. 1961. Effect of mild chemical and enzymatic treatments of soybean meal and soybean trypsin inhibitors on their nutritive and biochemical properties. J. Nutr. 75: 379–387.

    PubMed  CAS  Google Scholar 

  80. Turner, R.H., I.E. Liener. 1975. The effect of the selective removal of hemagglutinins on the nutritive value of soybeans. J. Agric. Food Chem. 23: 484–487.

    Article  PubMed  CAS  Google Scholar 

  81. Orf, J.H., T. Hymowitz. 1979. Soybean linkage test between Ti and Le seed proteins. Soybean Genet. Newsl. 6: 32.

    Google Scholar 

  82. Kinsella, J.E. 1979. Functional properties of soy proteins. J. Am. Oil Chemists’ Soc. 56: 242–258.

    Article  CAS  Google Scholar 

  83. Gertler, A., Y. Birk. 1965. Purification and characterization of 0–amylase from soya beans. Biochem. J. 95: 621–627.

    PubMed  CAS  Google Scholar 

  84. Greenwood, C.T., A.W. Macgregor, E.A. Milne. 1965. Starch degrading enzymes. II. The 0–enzyme from soybeans; purification and properties. Carbohydrate Res. 1: 229–241.

    Article  CAS  Google Scholar 

  85. Peat, S., W.J. Whelan, S.J. Pirt. 1949. The amylolytic enzymes of soybean. Nature 164: 499–500.

    Article  PubMed  CAS  Google Scholar 

  86. Birk, Y., M. Waldman. 1965. Amylolytic, trypsininhibiting, and urease-activity in three varieties of soybeans and in the soybean plant. Qualitias Plantarum et Materiae Vegetabiles 12: 200–209.

    Google Scholar 

  87. Fukumoto, J., Y. Tsujisaka. 1954. Studies on soybean amylase. Purification and crystallization of the 0–amylase of soybean. Kagaku to Kogyo, Osaka 28: 282–287 (in Japanese).

    CAS  Google Scholar 

  88. Morita, Y., F. Yagi, S. Aibara, H. Yamashita. 1976. Chemical composition and properties of soybean ß-amylase. J. Biochem. 79: 591–603.

    PubMed  CAS  Google Scholar 

  89. Gorman, M.B., Y.T. Kiang. 1977. Variety specific electrophoretic variants of four soybean enzymes. Crop Sci. 17: 963–965.

    Article  CAS  Google Scholar 

  90. Gorman, M.B., Y.T. Kiang. 1978. Models for the inheritance of several variant soybean electrophoretic zymograms. J. Heredity 69: 255–258.

    CAS  Google Scholar 

  91. Hildebrand, D.F., T. Hymowitz. 1980. The Spi locus in soybean codes for ß-amylase. Crop Sci. 20: 165–168.

    Article  CAS  Google Scholar 

  92. Larsen, A.L. 1967. Electrophoretic differences in seed proteins among varieties of soybean, Glycine max (L.) Merrill. Crop Sci. 7: 311–313.

    Article  CAS  Google Scholar 

  93. Larsen, A.L., B.E. Caldwell. 1968. Inheritance of certain proteins in soybean seed. Crop Sci. 8: 474–476.

    Article  Google Scholar 

  94. Orf, J.H., T. Hymowitz. 1976. The gene symbols Spia and 52p1b assigned to Larsen and Caldwell’s seed protein bands A and B. Soybean Genet. Newsl. 3: 27–28.

    Google Scholar 

  95. Hildebrand, D.F., T. Hymowitz. 1979. Inheritance of the lack of ß-amylase activity in soybean seed. Agron. Abs., p. 63.

    Google Scholar 

  96. Hymowitz, T., N. Kaizuma, J.H. Orf, H. Skorupska. 1979. Screening the USDA soybean germplasm collection for 5.11 variants. Soybean Genet. Newsl. 6: 30–32.

    Google Scholar 

  97. Wilson, L.S., V.A. Birmingham, D.P. Moon, H.E. Snyder. 1978. Isolation and characterization of starch from mature soybeans. Cereal Chem. 55: 661–670.

    Google Scholar 

  98. Yazdi-Samadi, B., R.W. Rinne, R.D. Seif. 1977. Components of developing soybean seeds: oil, protein, sugars, starch, organic acids, and amino acids. Agron. J. 69: 481–486.

    Article  CAS  Google Scholar 

  99. Dunn, G. 1974. A model for starch breakdown in higher plants. Phytochem. 13: 1341–1346.

    Article  CAS  Google Scholar 

  100. Whittaker, R.H., P.P. Feeny. 1971. Allelochemics: chemical interactions between species. Science 171: 767–770.

    Article  Google Scholar 

  101. Ehrlich, P.R., P.H. Raven. 1967. Butterflies and plants. Sci. Amer. 216: 104–113.

    Article  Google Scholar 

  102. Freedland, W.J., D.H. Janzen. 1974. Strategies in herbivory by mammals: the role of plant secondary compounds. Amer. Natur. 108: 269–289.

    Article  Google Scholar 

  103. Seigler, D.S. 1977. Primary roles for secondary compounds. Biochem. Syst. & Ecol. 5: 195–199.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Hymowitz, T. (1980). Chemical Germplasm Investigations in Soybeans: The Flotsam Hypothesis. In: Swain, T., Kleiman, R. (eds) The Resource Potential in Phytochemistry. Recent Advances in Phytochemistry, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8309-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8309-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8311-6

  • Online ISBN: 978-1-4684-8309-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics