Skip to main content

Part of the book series: NATO Conference Series ((E,volume 6))

Abstract

That different forms of a chemical element are likely to exert different biological effects in the natural environment would appear somewhat of a truism. Considering, however, that heavy metals are well established as environmental pollutants (Förstner and Wittmann, 1979), it is surprising that relatively little attention has been paid to the question of metal speciation in relation to biological effects. Recent reviews of metal pollution in the aquatic environment (Bryan, 1976; Prosi, 1979) have touched upon metal speciation as related to toxicity, but the aquatic toxicological literature by and large ignores it. An exception must be made for phytoplankton research, where worthwhile efforts have been made to properly define culture media (Morel et al., 1979) and to apply chemical speciation models to observations on phytoplankton growth (Jackson and Morgan, 1978). Otherwise, it would appear, few publications specifically address the above question in a more than rudimentary way. This is not meant to imply criti cism of scientists working on heavy metals; it is merely an appraisal of the current situation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, D.M.,and Morel, F.M.M., 1978, Copper sensitivity of Gonyaulax tamarensis, Limnol. Oceanogr., 23: 283.

    Article  CAS  Google Scholar 

  • Anderson, M.A., Morel, F.M.M., and Guillard, R.R.L., 1978, Growth limitation of a coastal diatom by low zinc ion activity,Nature, 276: 70.

    Article  CAS  Google Scholar 

  • Andreae, M.O., 1978, Distribution and speciation of arsenic in natural waters and some marine algae, Deep-Sea Res., 25: 391.

    Article  CAS  Google Scholar 

  • Andreae, M.O., 1979, Arsenic speciation in seawater and interstitial waters: The influence of biological-chemical interactions on the chemistry of a trace element, Limnol. Oceanogr., 24: 440.

    Article  CAS  Google Scholar 

  • Andreae, M.O.,and Klumpp, D., 1979, Biosynthesis and release of organoarsenic compounds by marine algae, Environ. Sci. Technol., 13: 738.

    Article  CAS  Google Scholar 

  • Baker, M.D., Wong, P.T.S., Chau, Y.K., Mayfield, C.I.,and Innis, W.E., 1981, Methylation of lead, mercury, arsenic and selenium in the acidic aquatic environment, in: “Heavy Metals in the Environment”, CEP Consultants, Edinburgh.

    Google Scholar 

  • Bartlett, P.D.,and Craig, P.J., 1981, Total mercury and methyl mercury levels in British estuarine sediments - II, Water Res., 15: 37.

    Article  CAS  Google Scholar 

  • Beijer, K.,and Jernelov, A., 1978, Ecological aspects of mercury-selenium interactions in the marine environment, Environ. Health Perspect., 25: 43.

    CAS  Google Scholar 

  • Blair, W.R., Jackson, J.A., Olson, G.J., Brinckman, F.E.,and Iverson, W.P., 1981, Biotransformation of tin, in: “Heavy Metals in the Environment”, CEP Consultants, Edinburgh.

    Google Scholar 

  • Boddington, M.J., DeFreitas, A.S.W.,and Miller, D.R., 1979, The effect of benthic invertebrates on the clearance of mercury from sediments, Ecotoxicol. Environ. Safety, 3: 236.

    Article  CAS  Google Scholar 

  • Bothner, M.H., Jahnke, R.A., Peterson, M.L.,and Carpenter, R., 1980, Rate of mercury loss from contaminated estuarine sediments, Geochim. Cosmochim. Acta, 44: 273.

    Article  CAS  Google Scholar 

  • Boulègue, J.,and Renard, D., 1980, Catalyse bactérienne de l’oxyda¬tion du manganèse manganeux dans les eaux. Conséquences géo¬chimiques, C.R. Acad. Sc. Paris, D, 290: 1165.

    Google Scholar 

  • Boyle, E.A., Sclater, F.,and Edmond, J.M., 1976, On the marine geo¬chemistry of cadmium, Nature, 263: 42.

    Article  CAS  Google Scholar 

  • Branica, M.,and Konrad, Z., eds., 1980, “Lead in the Marine Environ¬ment”, Pergamon Press, Oxford.

    Google Scholar 

  • Bruland, K.W., Knauer, G.A.,and Martin, J.H., 1978, Cadmium in north¬east Pacific waters, Limnol. Oceanogr., 23: 618.

    Article  CAS  Google Scholar 

  • Bryan, G.W., 1976, Heavy metal pollution in the sea, in: “Marine Pollution”, R. Johnston, ed., Academic Press, London.

    Google Scholar 

  • Chau, Y.K., Wong, P.T.S., Kramar, O.,and Bengert, G.A., 1981, Methylation of tin in the aquatic environment, in: “Heavy Metals in the Environment”, CEP Consultants, Edinburgh.

    Google Scholar 

  • Chau, Y.K., Wong, P.T.S., Silverberg, B.A., Luxon, P.L.,and Bengert, G.A., 1976, Methylation of selenium in the aquatic environment, Science, 192: 1130.

    Google Scholar 

  • Craig, P., 1981, Biomethylation: Pollution amplified, New Sci., 90: 694.

    CAS  Google Scholar 

  • Cranston, R.E.,and Murray, J.W., 1980, Chromium species in the Columbia River and estuary, Limnol. Oceanogr., 25: 1104.

    Article  CAS  Google Scholar 

  • Davies, I.M., Graham, W.C.,and Pirie, J.M., 1979, A tentative determination of methylmercury in seawater, Mar. Chem., 7: 111.

    Article  CAS  Google Scholar 

  • Duinker, J.C., Wollast, R.,and Billen, G., 1979, Estuarine Coastal Mar. Sci., 9: 727.

    Article  CAS  Google Scholar 

  • Dyrssen, D.,and Wedborg, M., 1980, Major and minor elements, chemical speciation in estuarine waters, in: “Chemistry and Biogeo¬chemistry of Estuaries”, E. Olausson and I. Cato, eds., Wiley, Chichester.

    Google Scholar 

  • Eaton, A., 1979, Removal of ‘soluble’ iron in the Potomac river estuary, Estuarine Coastal Mar. Sci., 9: 41.

    Article  CAS  Google Scholar 

  • Edmonds, J.S.,and Francesconi, K.A., 1981, Arseno-sugars from brown kelp (Ecklonia radiata) as intermediates in cycling of arsenic in a marine ecosystem, Nature, 289: 602.

    Article  CAS  Google Scholar 

  • Emerson, S., Cranston, R.E.,and Liss, P.S., 1979, Redox species in a reducing fjord: Equilibrium and kinetic considerations,Deep-Sea Res., 26A: 859.

    Article  Google Scholar 

  • Engel, D.W.,and Fowler, B.A., 1979, Factors influencing cadmium accumulation and its toxicity to marine organisms,Environ. Health Perspect., 28: 81.

    Article  CAS  Google Scholar 

  • Engel, D.W.,and Sunda, W.G., 1979, Toxicity of cupric ion to eggs of the spot Leiostomus xanthurus and the Atlantic silverside Menidia menidia, Mar. Biol., 50: 121.

    Article  CAS  Google Scholar 

  • Förstner, U.,and Wittmann, G.T.W., 1979, “Metal Pollution in the Aquatic Environment”, Springer-Verlag, Berlin.

    Google Scholar 

  • Gächter, R.,and Mâres, A., 1979, MELIMEX, an experimental heavy metal pollution study: Effects of increased heavy metal loads on phytoplankton communities, Schweiz. Z. Hydrol., 41:228.

    Google Scholar 

  • Gächter, R., and Urech, J., in: this volume.

    Google Scholar 

  • George, S.G.,and Coombs, T.L., 1977, The effects of chelating agents on the uptake and accumulation of cadmium by Mytilus edulis, Mar. Biol., 39: 261.

    Article  CAS  Google Scholar 

  • Giesy, J.P., Briese, L.A., and Leversee, G.J., 1978, Metal binding capacity of selected Maine surface waters, Environ. Geol., 2: 257.

    Article  CAS  Google Scholar 

  • Grove, J.R., 1980, Investigations into the formation and behaviour of aqueous solutions of lead alkyls, in: “Lead in the Marine Environment”, M. Branica and Z. Konrad, eds., Pergamon Press, Oxford.

    Google Scholar 

  • Hart, B.T., 1981, Trace metal complexing capacity of natural waters: A review, Environ. Technol. Lett., 2: 95.

    Article  CAS  Google Scholar 

  • Hoffmann, M.R., and Eisenreich, S.J., 1981, Development of a com puter-generated equilibrium model for the variation of iron and manganese in the hypolimnion of Lake Mendota, Environ. Sci. Technol., 15: 339.

    Article  CAS  Google Scholar 

  • Howard, A.G., and Nickless, G., 1978, Heavy metal complexation in polluted molluscs. 3. Periwinkles (Littorina littorea), cockles (Cardium edule) and scallops (Chlamys opercularis), Chem.-Biol. Interact., 23: 227.

    Article  CAS  Google Scholar 

  • IRPTC, 1978, “Data Profiles for Chemicals for the Evaluation of their Hazards to the Environment of the Mediterranean Sea, Vol. I”, (IRPTC Data Profile Series 1 ), UNEP, Geneva.

    Google Scholar 

  • Jackson, G.A., and Morgan, J.J., 1978, Trace metal-chelator inter¬actions and phytoplankton growth in seawater media: Theoretical analysis and comparison with reported observations, Limnol. Oceanogr., 23: 268.

    CAS  Google Scholar 

  • Jennings, J.R., Rainbow, P.S., and Scott, A.G., 1979, Studies on the uptake of cadmium by the crab Carcinus maenas in the laboratory. II. Preliminary investigation of cadmium-binding proteins, Mar. Biol., 50: 141.

    Article  CAS  Google Scholar 

  • Klumpp, D.W., and Peterson, P.J., 1981, Chemical characteristics of arsenic in a marine food chain,Mar. Biol., 62: 297.

    Article  CAS  Google Scholar 

  • Kudo, A., Miller, D.R., Akagi, H., Mortimer, D.C., DeFreitas, A.S. Nagase, H., Townsend, D.R., and Warrock, R.G., 1978, The role of sediments on mercury transport (total-and methyl-) in a river system, Prog. Water Technol., 10: 329.

    Google Scholar 

  • Luoma, S.N., 1977, The dynamics of biologically available mercury in a small estuary, Estuarine Coastal Mar. Sci., 5: 643.

    Article  CAS  Google Scholar 

  • McKnight, D.M., and Morel, F.M.M., 1980, Copper complexation by siderophores from filamentous blue-green algae, Limnol. Oceanogr., 25: 62.

    Article  CAS  Google Scholar 

  • Maddock, B.G., and Taylor, D., 1980, The acute toxicity and bio accumulation of some lead alkyl compounds in marine animals, in: “Lead in the Marine Environment”, M. Branica and Z. Konrad, eds., Pergamon Press, Oxford.

    Google Scholar 

  • Mantoura, R.F.C., 1981, Organo-metallic interactions in natural waters, in: “Marine Organic Chemistry”, E.K. Duursma and R. Dawson, eds., Elsevier, Amsterdam.

    Google Scholar 

  • Mantoura, R.F.C., Dickson, A., and Riley, J.P., 1978, The complexation of metals with humic materials in natural waters, Estuarine Coastal Mar. Sci., 6: 387.

    Article  CAS  Google Scholar 

  • Measures, C.I., and Burton, J.D., 1978, Behaviour and speciation of dissolved selenium in estuarine waters, Nature, 273: 293.

    Article  CAS  Google Scholar 

  • Measures, C.I., and Burton, J.D., 1980, The vertical distribution and oxidation states of dissolved selenium in the northeast Atlantic Ocean and their relationship to biological processes, Earth Planet. Sci. Lett., 46: 385.

    Article  CAS  Google Scholar 

  • Measures, C.I., McDuff, R.E., and Edmond, J.M., 1980, Selenium redox chemistry at GEOSECS 1 reoccupation, Earth Planet. Sci. Lett., 49: 102.

    Article  CAS  Google Scholar 

  • Mercury, 1976, “Environmental Health Criteria 1”, WHO, Genéve.

    Google Scholar 

  • Moore, R.H., Burton, J.D., Williams, P.J. Le B., and Young, M.L., 1979, The behaviour of dissolved organic material, iron and manganese during estuarine mixing, Geochim. Cosmochim. Acta, 43: 919.

    Article  CAS  Google Scholar 

  • Morel, F.M.M., Rueter, J.G., Anderson, D.M., and Guillard, R.R.L., 1979, Aquil: A chemically defined phytoplankton culture medium for trace metal studies, J. Phycol., 15: 135.

    Article  CAS  Google Scholar 

  • Morris, A.W., and Bale, A.J., 1979, Effect of rapid precipitation of dissolved Mn in river water on estuarine Mn distributions, Nature, 279: 318.

    Article  CAS  Google Scholar 

  • Morris, A.W., Mantoura, R.F.C., Bale, A.J., and Howland, R.J.M., 1978, Very low salinity regions of estuaries: Important sites for chemical and biological reactions, Nature, 274: 678.

    Article  CAS  Google Scholar 

  • Nakayama, E., Tokoro, H., Kuwamoto, T., and Fujinaga, T., 1981, Dissolved state of chromium in seawater, Nature, 290: 768.

    Article  CAS  Google Scholar 

  • Noel-Lambot, F., 1981, Presence in the intestinal lumen of marine fish of corpuscles with a high cadmium-, zinc-and copper-binding activity: A possible mechanism of heavy metal tolerance,Mar. Ecol. Prog. Ser., 4: 175.

    Article  CAS  Google Scholar 

  • Noel-Lambot, F., Bouquegneau, J.M., Frankenne, F., and Disteche, A., 1978, Le role des métallothioneines dans le stockage des métaux lourds chez les animaux marins, Rev. Int. 0c6anogr. Méd., 49: 13.

    CAS  Google Scholar 

  • Phillips, D.J.H., 1980, “Quantitative Aquatic Biological Indicators”, Applied Science Publishers, London.

    Google Scholar 

  • Prosi, F., 1979, Heavy metals in organisms. in: “Metal Pollution in the Aquatic Environment”, U. Förstner and G.T.W. Wittmann, Springer-Verlag, Berlin.

    Google Scholar 

  • Reisinger, K., Stoeppler, M., and Nürnberg, H.W., 1981a, Evidence for the absence of biological methylation of lead in the environ¬ment, Nature, 291: 228.

    Article  CAS  Google Scholar 

  • Reisinger, K., Stoeppler, M., and Nürnberg, H.W., 1981b, On the bio¬logical methylation of lead, mercury, methylmercury and arsenic in the environment, in: “Heavy Metals in the Environment”, CEP Consultants, Edinburgh.

    Google Scholar 

  • Rice, M.A., and Chien, P.K., 1979, Uptake, binding and clearance of divalent cadmium in Glycera dibranchiata (Annelida: Polychaeta), Mar. Biol., 53: 33.

    Article  CAS  Google Scholar 

  • Röderer, G., 1981, Fate and toxicity of tetraalkyl lead and its derivatives in aquatic environments, in: “Heavy Metals in the Environment”, CEP Consultants, Edinburgh.

    Google Scholar 

  • Roesijadi, G., 1981, The significance of low molecular weight, me¬tallothionein-like proteins in marine invertebrates: Current status, Mar. Environ. Res., 4: 167.

    Article  CAS  Google Scholar 

  • Rueter, J.G., and Morel, F.M.M., 1981, The interactions between zinc deficiency and copper toxicity as it affects the silicic acid uptake mechanisms in Thalassiosira pseudonana, Limnol. Oceanogr., 26: 67.

    Article  CAS  Google Scholar 

  • Sanders, J.G., 1978, Enrichment of estuarine phytoplankton by the addition of dissolved manganese, Mar. Environ. Res., 1: 59.

    Article  CAS  Google Scholar 

  • Sanders, J.G., 1979, Effects of arsenic speciation and phosphate concentration on arsenic inhibition of Skeletonema costatum (Bacillariophyceae), J. Phycol., 15: 422.

    Google Scholar 

  • Sanders, J.G., 1980, Arsenic cycling in marine ecosystems, Mar. Environ. Res., 3: 257.

    Article  CAS  Google Scholar 

  • Sanders, J.G., and Windom, H.L., 1980, The uptake and reduction of arsenic species by marine algae, Estuarine Coastal Mar. Sci., 10: 555.

    Article  CAS  Google Scholar 

  • Saxena, J., and Howard, P.H., 1977, Environmental transformation of alkylated and inorganic forms of certain metals, Adv. Appl. Microbiol., 21: 185.

    Article  CAS  Google Scholar 

  • Seeliger, U., and Edwards, P., 1979, Fate of biologically accumulated copper in growing and decomposing thallí of two benthic red marine algae, J. Mar. Biol. Assoc. U.K., 59: 227.

    Article  CAS  Google Scholar 

  • Sipos, L., Raspor, B., Nürnberg, H.W., and Pytkowicz, R.M., 1980, Interaction of metal complexes with coulombic ion-pairs in aqueous media of high salinity, Mar. Chem., 9: 37.

    Article  CAS  Google Scholar 

  • Sipos, L., Valenta, P., Nürnberg, H.W., and Branica, M., 1980, Voltammetric determination of the stability constants of the predominant labile lead complexes in seawater, in: “Lead in the Marine Environment”, M. Branica and Z. Konrad, eds., Pergamon Press, Oxford.

    Google Scholar 

  • Summers, A.O., and Silver, S., 1978, Microbial transformations of metals, Ann. Rev. Microbiol., 32: 637.

    Article  CAS  Google Scholar 

  • Thomas, W.H., and Seibert, D.L.R., 1977, Effects of copper on the dominance and diversity of algae: Controlled ecosystem pollution experiment, Bull. Mar. Sci., 27: 23.

    CAS  Google Scholar 

  • Topping, G., and Davies, I.M., 1981, Methylmercury production in the marine water column, Nature, 290: 243.

    Article  CAS  Google Scholar 

  • Tuschall, J.R., and Brezonik, P.L., 1980, Characterization of organic nitrogen in natural waters: Its molecular size, protein content, and interactions with heavy metals, Limnol. Oceanogr., 25: 495.

    Google Scholar 

  • Vaccaro, R.F., in: this volume.

    Google Scholar 

  • van der Putte, I., 1981, “An Assessment of the Environmental Toxicity of Hexavalent Chromium in Fish”, (Dissertation Agric. Univ.), Pudoc, Wageningen.

    Google Scholar 

  • Waslenchuk, D.G., 1978, The budget and geochemistry of arsenic in a continental shelf environment, Mar. Chem., 7: 39.

    Article  CAS  Google Scholar 

  • Wollast, R., Billen, G., and Duinker, J.C., 1979, Behaviour of man¬ganese in the Rhine and Scheldt estuaries. I. Physico-chemical aspects, Estuarine Coastal Mar. Sci., 9: 161.

    Article  CAS  Google Scholar 

  • Wood, J.M., 1974, Biological cycles for toxic elements in the environ¬ment, Science, 183: 1049.

    Article  CAS  Google Scholar 

  • Wrench, J.J., and Addison, R.F., 1981, Reduction, methylation, and incorporation of arsenic into lipids by the marine phytoplankton Dunaliella tertiolecta, Can. J. Fish. Aquat. Sci., 38: 518.

    Article  CAS  Google Scholar 

  • Wrench, J., Fowler, S.W., and Unlit, M.Y., 1979, Arsenic metabolism in a marine food chain,Mar. Pollut. Bull., 10: 18.

    Article  CAS  Google Scholar 

  • Wright, D.A., 1977, The uptake of cadmium into the haemolymph of the shore crab, Carcinus maenas(L.). The relationship with copper and other divalent ions, J. Exp. Biol., 67: 147.

    CAS  Google Scholar 

  • Yeats, P.A., Sundby, B., and Brewer, J.M., 1979, Manganese recycling in coastal waters, Mar. Chem., 8: 43.

    Article  CAS  Google Scholar 

  • Young, J.S., Gurtisen, J.M., Apts, C.W., and Crecelius, E.A., 1979, The relationship between the copper complexing capacity of sea water and the copper toxicity in shrimp zoeae, Mar. Environ. Res., 2: 265.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Smies, M. (1983). Biological Aspects of Trace Element Speciation in the Aquatic Environment. In: Leppard, G.G. (eds) Trace Element Speciation in Surface Waters and Its Ecological Implications. NATO Conference Series, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8234-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8234-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8236-2

  • Online ISBN: 978-1-4684-8234-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics