Phototransduction Mutants of Drosophila Melanogaster

  • A. A. Alawi
  • V. Jennings
  • J. Grossfield
  • William L. Pak
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 24)


One of the least understood problems in sensory physiology still remains the transduction process, i.e. the mechanism by which the reception of sensory stimuli is linked to ionic events in the receptor membrane. Several years ago we decided to approach the problem of transduction in visual receptors with the use of mutants, because it seemed to us that alternative approaches to the study of receptors were badly needed. The approach is based on the notion that the gene represents the ultimate unit of physiological function. Thus, a single-step mutation alters or removes a unit of function. Ideally this allows one to study the system in the absence of a single component at a time. It is hardly necessary to detail the success this approach has had in elucidating cellular functions at the microorganismal level. More recently, this approach has been applied to explore the mechanisms of photosynthesis (Levine, 1968), bacterial chemotaxis (Adler, 1969), and protozoan motility (Kung, 1971). The present study and other studies of a similar nature (Benzer, 1967; Ikeda and Kaplan, 1970; Heisenberg, 1971) represent attempts to extend the technique of induced mutation to the nervous system and to the behaviour it subserves. Of all the processes of the nervous system, the receptor mechanism appeared to us to be one of the more logical places to attempt to apply the potentially powerful technique of induced mutation. Unlike more central processes of the nervous system, the receptor process is not likely to be complicated by such problems as neuronal plasticity, multiple pathways, and modifications by the environment.


Spectral Sensitivity Visual Pigment Membrane Resistance Peripheral Retina Retinula Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ADLER, J. 1969. Science, 166, 1588.PubMedCrossRefGoogle Scholar
  2. ADRIAN, R.H. 1956. J. Physiol, 133, 631.PubMedGoogle Scholar
  3. ALAWI, A.A. 1972. Ph.D. thesis, Purdue University.Google Scholar
  4. ALAWI, A.A. and W.L. PAK. 1971. Science, 172, 1055.PubMedCrossRefGoogle Scholar
  5. BENZER, S. 1967. Proc. Nat. Acad. Sci., 58, 1112.Google Scholar
  6. BITENSKY, M.W., R.E. GORMAN and W.H. MILLER. 1971. Proc. Nat. Acad. Sci., 68, 561.PubMedCrossRefGoogle Scholar
  7. BOSCHEK, C.B. 1971. Z Zellforsch, 118, 369.PubMedCrossRefGoogle Scholar
  8. BURKHARDT, D. 1962. Symp. Soc. Exp. Biol., 16, 86.Google Scholar
  9. BURKHARDT, D. and H. AUTRUM. 1960. Z. Naturforsch, 15B, 612.Google Scholar
  10. COSENS, D.J. and A. MANNING. 1969. Nature, 224, 285.PubMedCrossRefGoogle Scholar
  11. GOLDSMITH, T.H. and H.R. FERNANDEZ. 1968. J. Exp. Biol., 49, 669.PubMedGoogle Scholar
  12. GROSSFIELD, J. and W.L. PAK. 1971a. Genetics, 68, Suppl 25.Google Scholar
  13. GROSSFIELD, J. and W.L. PAK. 1971b. Drosophila Inform. Serv., 47, 59Google Scholar
  14. HEISENBERG, M. 1971. Drosophila Inform. Serv., 46, 68.Google Scholar
  15. HOTTA, Y. and S. BENZER. 1969. Nature, 222, 354.PubMedCrossRefGoogle Scholar
  16. HOTTA, Y. and S. BENZER. 1970. Proc. Nat. Acad. Sci., 67, 1156.PubMedCrossRefGoogle Scholar
  17. HOYLE, G. 1953. J. Exp. Biol., 30, 121.Google Scholar
  18. IKEDA, K. and W.D. KAPLAN. 1970. Proc. Nat. Acad. Sci., 66, 765.PubMedCrossRefGoogle Scholar
  19. KANEKO, A. 1970. J Physiol., 207, 623.PubMedGoogle Scholar
  20. KIRSCHFELD, K. 1966. In The Functional Organization of the Compound Eye. (C. G. Bernhard, ed.). Pergamon Press, pp. 291–307.Google Scholar
  21. KIRSCHFELD, K. 1969. In Proceedings Inter. School Phys. “Enrico Fermi” Course XLI I I. (W. Reichardt, ed.). Academic Press, N.Y., pp. 116–136.Google Scholar
  22. KUNG, C. 1971. Z. vergl. Physiol., 71, 142.CrossRefGoogle Scholar
  23. LANGER, H. and B. THORELL. 1965. Experimental Cell Research, 41, 673.CrossRefGoogle Scholar
  24. LEVINE, R.P. 1968. Science, 162, 768.PubMedCrossRefGoogle Scholar
  25. LEWIS, E.B. and F. BACHER. 1968. Drosophila Inform. Serv., 43, 193.Google Scholar
  26. LINDSLEY, D.L. and E.H. GRELL. 1968. Carnegie Inst. Wash. Publ. No. 627.Google Scholar
  27. MILLER, W.H., R.E. GORMAN and M.W. BITENSKY. 1971. Science, 174, 295.PubMedCrossRefGoogle Scholar
  28. MILLONIG, G. 1961. Cytol, 11, 736.Google Scholar
  29. NAKA, K 1961. J. Gen. Physiol., 44, 571.PubMedCrossRefGoogle Scholar
  30. PAK, W.L., J. GROSSFIELD and N.V. WHITE. 1969. Nature, 222, 351.PubMedCrossRefGoogle Scholar
  31. PAK, W.L., J. GROSSFIELD and K.S. ARNOLD. 1970. Nature, 227, 518.PubMedCrossRefGoogle Scholar
  32. REYNOLDS, E.S. 1963. J. Cell Biol., 17, 208.PubMedCrossRefGoogle Scholar
  33. SCHOLES, J. 1969. Kybernetik, 6, 1497CrossRefGoogle Scholar
  34. STRETTON, A.O.W. and E.A. KlaVITZ. 1968. Science, 162, 132.PubMedCrossRefGoogle Scholar
  35. TOMITA, T. 1965. Cold Spring Harb Symp. Quant. Biol., 30, 559.PubMedCrossRefGoogle Scholar
  36. TOYODA, J.-L., H. NOSAKI and T. TOMITA. 1969. Vision Res., 9, 453.PubMedCrossRefGoogle Scholar
  37. TRUJILLO-CENOZ, O. and J. MELAMED. 1966. In The Functional Organisation of the Compound Eye. (C. G. Bernhard, ed.). Pergamon Press, pp. 339–361.Google Scholar
  38. WASHIZU, Y. 1964. Biochem. Physiol., 12, 369.Google Scholar
  39. YOSHIKAMI, S. and W.A. HAGINS. 1971. Biophys. Soc. Abstracts, 11, 47a.Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • A. A. Alawi
    • 1
  • V. Jennings
    • 1
  • J. Grossfield
    • 1
  • William L. Pak
    • 1
  1. 1.Department of Biological SciencesPurdue UniversityLafayetteUSA

Personalised recommendations