Skip to main content

Ion Beam Deposition of Ceramic-Like Coatings

  • Chapter

Part of the book series: Materials Science Research ((MSR,volume 17))

Abstract

Over the last decade, the deposition of thin and thick films by condensing suprathermal, energetic particles has roused steadily increasing interest. The most convenient way to generate particle fluxes with excess energies in the range from a few eV to some keV is offered by using adequately accelerated ions that can be extracted from external sources or from a plasma sustained inside the deposition chamber. Although ion beam and plasma deposition processes have much in common, the term “ion beam deposition” should be applied only if the work pressure in the deposition chamber is below some 10-2 Pa. Then the mean free path of the particles is large compared with the usual dimensions, and gas phase interactions may often be neglected. A particular advantage of ion beam techniques is that the process parameters can be controlled rather independently within wide ranges of particle energies and flux densities. l–3 On the other hand, it must be emphasized that systematic investigations by ion beam techniques can contribute to optimize high-rate deposition processes, which on a technological scale are performed by plasma ion plating or magnetron sputtering.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Gautherin and C. Weissmantel, Thin Solid Films, 50, 135 (1978).

    Article  CAS  Google Scholar 

  2. T. Takagi, Thin Solid Films, 92, 3 (1982).

    Article  Google Scholar 

  3. C. Weissmantel, Thin Solid Films, 92, 55 (1982).

    Article  CAS  Google Scholar 

  4. J. M. E. Harper, “Ion Beam Deposition,” in Thin Film Processes, edited by J. L. Vossen and W. Kern, Academic Press, NY, 1978.

    Google Scholar 

  5. G. Carter and D. G. Armour, Thin Solid Films, 80, 13 (1981).

    Article  CAS  Google Scholar 

  6. P. D. Reader and H. R. Kaufman, J. Vac. Sci. Technol., 12, 1344 (1975).

    Article  Google Scholar 

  7. O. Fiedler, G. Reisse, B. Schoneich, and C. Weissmantel, Proc. 4th Intern. Vac. Congr., Manchester, 1968, 569.

    Google Scholar 

  8. G. Guatherin, P. Bouchier, C. Schwebel, and P. Vapaille, Le Vide, 182, 235 (1976).

    Google Scholar 

  9. J. Franks, Le Vide, Suppl. to 196, 53 (1979).

    Google Scholar 

  10. K. Bewilogua, D. Dietrich, L. Pagel, C. Schurer, and C. Weissmantel, Surf. Sci., 86, 308 (1979).

    Article  CAS  Google Scholar 

  11. J. M. E. Harper, J. J. Cuomo, P. A. Leary, G. M. Summa, H. R. Kaufman, and F. J. Bresnock, J. Electrochem. Soc., 128, 1077 (1981).

    Article  CAS  Google Scholar 

  12. J. H. Freeman, Nature, 275, 634 (1978).

    Article  CAS  Google Scholar 

  13. K. Yagi, S. Tamura, and T. Tokuyama, Jap. J. Appl. Phys., 16, 245 (1977).

    Article  CAS  Google Scholar 

  14. A.E. T. Kuiper, G. E. Thomas, and W. J. Schouten, J. Crystal Growth, 51, 17 (1981).

    Article  CAS  Google Scholar 

  15. C. Weissmantel, G. Reisse, J. Erler, F. Henny, K. Bewilogua, and C. Schurer, Thin Solid Films, 63, 315 (1979).

    Article  CAS  Google Scholar 

  16. C. Weissmantel, O. Fiedler, G. Hecht, and G. Reisse, Thin Solid Films, 13, 359 (1972).

    Article  CAS  Google Scholar 

  17. G. Gautherin, C. Schwebel, and C. Weissmantel, Proc. 7th Intern. Vac. Congr., Berger, Vienna, 1977, 1579.

    Google Scholar 

  18. T. Takagi, I. Yamada, and A. Sasaki, J. Vac. Sci. Technol, 12, 1128 (1975).

    Article  CAS  Google Scholar 

  19. H-J. Erler, G. Reisse, and C. Weissmantel, Thin Solid Films, 65, 233 (1980).

    Article  CAS  Google Scholar 

  20. C. Weissmantel, Thin Solid Films, 96 (1982), in print.

    Google Scholar 

  21. S. Schiller, U. Heisig, and K. Goedicke, Thin Solid Films, 40, 327 (1977).

    Article  CAS  Google Scholar 

  22. J. E. Morris, Thin Solid Films, 11 299 (1972).

    Article  CAS  Google Scholar 

  23. N. C. Miller, B. Hardiman, and G. A. Shirn, J. Appl. Phys., 41, 1850 (1970).

    Article  CAS  Google Scholar 

  24. E. B. Priestley, B. Abeles, and R. W. Cohen, Phys. Rev. B 12, 2121 (1975).

    Article  CAS  Google Scholar 

  25. C. A. Neugebauer, Thin Solid Films, 6, 443 (1970).

    Article  CAS  Google Scholar 

  26. J. Gasperic and B. Navinsek, Thin Solid Films, 36, 353 (1976).

    Article  CAS  Google Scholar 

  27. P. Reinhardt, C. Reinhardt, G. Reisse, and C. Weissmantel, Thin Solid Films, 51, 99 (1978).

    Article  CAS  Google Scholar 

  28. H. Vora and T. J. Moravec, J. Appl. Phys., 52, 6151 (1981).

    Article  CAS  Google Scholar 

  29. D. Deitrich, Techn. Hochsch. Karl-Marx-Stadt, personal communication, 1982.

    Google Scholar 

  30. C. Weissmantel, C. Schurer, F. Frohlich, P. Grau, and H. Lehmann, Thin Solid Films, 61, L5 (1979).

    Article  CAS  Google Scholar 

  31. K. Bewilogua, D. Dietrich, G. Holzhuter, and C. Weissmantel, phys. stat. sol. (a), 71, K57 (1982).

    Article  CAS  Google Scholar 

  32. D. A. Thompson, Ratiation Effects, 56, 105 (1981).

    Article  CAS  Google Scholar 

  33. M. H. Brodsky, Thin Solid Films, 50, 57 (1978).

    Article  CAS  Google Scholar 

  34. K. Bewilogua, E. Bugiel, B. Rau, C. Schurer, and C. Weissmantel, Kristall und Technik, 15, 1205 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Weissmantel, C. et al. (1984). Ion Beam Deposition of Ceramic-Like Coatings. In: Davis, R.F., Palmour, H., Porter, R.L. (eds) Emergent Process Methods for High-Technology Ceramics. Materials Science Research, vol 17. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8205-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8205-8_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8207-2

  • Online ISBN: 978-1-4684-8205-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics