Skip to main content

Vascular Smooth Muscle Reactivity in Hypoxia

  • Chapter
Book cover Cerebral Sinus Thrombosis
  • 67 Accesses

Abstract

Arterial as well as tissue hypoxia induces vasodilation and a subsequent increase of blood flow in several organs [2,5,7,11,13]. In brain tissue regional blood flow increases significantly if the arterial oxygen falls below 60 mmHg. In the presence of hypoxia severe enough to cause anoxia in single cells, characteristic metabolic changes develop in cerebral cortex. Therefore, adjustment of the vascular system under these conditions is usually attributed to metabolic factors [9]. Among these K+, H+ ions, and adenosine seem to play an important role [2,7,13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. J. Block, H. Feinberg, K. Herbaczynska-Cedro and J. R. Vane, Anoxia-induced release of prostaglandins in rabbit isolated hearts, Circ. Res., 36: 34–42 (1975).

    Article  CAS  PubMed  Google Scholar 

  2. D. W. Busija and D. D. Heistad, Factors involved in the physiological regulation of the cerebral circulation, Rev. Physiol. Biochem. Pharmacol., 101: 161–211 (1984).

    Article  CAS  PubMed  Google Scholar 

  3. R. Busse, U. Förstermann, H. Matsuda and U. Pohl, The role of prostaglandins in the endothelium-mediated vasodilatory response to hypoxia, Pflugers Arch., 401: 77–83 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. R. Detar, Mechanism of physiological hypoxia-induced depression of vascular smooth muscle contraction, Am. J. Physiol., 238: H761 - H769 (1980).

    CAS  PubMed  Google Scholar 

  5. B. R. Duling, Oxygen sensitivity of vascular smooth muscle. II. In vivo studies, Am J. Physiol., 227:42–49 (1974).

    CAS  PubMed  Google Scholar 

  6. R. F. Furchgott and J. V. Zawadzki, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature, 288: 373–376 (1980).

    Article  CAS  PubMed  Google Scholar 

  7. J. Grote, Cerebral blood flow regulation under conditions of arterial hypoxia, in: “Cerebral Blood Flow”e Arterial System”, R. D. Bauer and R. Busse, eds., Springer, Berlin, Heidelberg and New York, pp 209–215 (1978).

    Chapter  Google Scholar 

  8. J. Grote, K. Zimmer and R. Schubert, Effects of severe arterial hypocapnia on regional blood flow regulation, tissue PO2 and metabolism in the brain cortex of cats, Pflugers Arch., 391: 195–199 (1981).

    Article  CAS  PubMed  Google Scholar 

  9. J. Grote and R. Schubert, Regulation of cerebral perfusion and PO2 in normal and edematous brain tissue, in: “Oxygen Transport to Human Tissue”, J. A. Loeppky and M. L. Riedesel, eds., Elsevier North Holland, Amsterdam, New York and Oxford, pp 169–178 (1982).

    Google Scholar 

  10. P. Hellstrand, B. Johansson and K. Norberg, Mechanical, electrical and biochemical effects of hypoxia and substrate removal on spontaneously active vascular smooth muscle, Acta Physiol. Scand., 100: 69–83 (1977).

    Article  CAS  PubMed  Google Scholar 

  11. W. F. Jackson and B. R. Duling, The oxygen sensitivity of hamster cheek pouch arterioles. In vitro and in situ studies, Circ. Res., 53:515–525 (1983).

    Article  CAS  PubMed  Google Scholar 

  12. A. Kurtz, W. Jelkmann, J. Pfeilschrifter and C. Bauer, Role of prostaglandins in hypoxia-stimulated erythropoietin production, Am. J. PhysioL, 249: C3 - C8 (1985).

    CAS  PubMed  Google Scholar 

  13. W. Kuschinsky and U. Wahl, Local chemical and neurogenic regulation of cerebral vascular resistance, PhysioL Rev., 6: 202–211 (1978).

    Google Scholar 

  14. T. A. McCalden, R. G. Nath and K. Thiele, Prostacyclin and vasodilator mechanisms in the cerebral circulation, Blood Vessels, 20: 202 (1983).

    Google Scholar 

  15. R. M. J. Palmer, A. G. Ferrige and S. Moncada, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature, 327: 524–526 (1987).

    Article  CAS  PubMed  Google Scholar 

  16. J. D. Pickard, Role of prostaglandins and arachidonic acid derivatives in the coupling of cerebral blood flow to cerebral metabolism, J. Cereb. Blood Flow Metab., 1: 361–384 (1981).

    Article  CAS  PubMed  Google Scholar 

  17. G. M. Rubanyi and P. M. Vanhoutte, Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium, J. PhysioL, 364: 45–56 (1985).

    CAS  PubMed Central  PubMed  Google Scholar 

  18. K. Schrör, Prostaglandine und Endothelzellen, Z. Kardiol., Suppl. 7: 93–97 (1984).

    Google Scholar 

  19. G. Siegel, Membranphysiologische Grundlagen der peripheren Gefässregulation, Physiologie aktuell, 1: 31–52 (1986).

    Google Scholar 

  20. G. Siegel, R. Ehehalt and H. P. Koepchen, Membrane potential and relaxation in vascular smooth muscle, in: “Mechanisms of Vasodilatation”, P. M. Vanhoutte and I. Leusen, Karger, Basel, pp 56–72 (1978).

    Google Scholar 

  21. G. Siegel and J. Grote, Hypoxia effects hyperpolarization and relaxation in canine vascular smooth muscle, Fed. Proc., 46: 507 (1987).

    Google Scholar 

  22. G. Siegel, J. Grote, K. Zimmer, A. Adler and B. Litza, Electrophysiological effects of hypoxia on vasocular smooth muscle, in: “Vasodilatation”, P. M. Vanhoutte, ed., Raven Press, New York, pp 371–376 (1988).

    Google Scholar 

  23. G. Siegel, G. Stock, F. Schnalke and B. Litza, Electrical and mechanical effects of prostacyclin in the canine carotid artery, in: “Prostacyclin and its Stable Analogue Iloprost”, R. J. Gryglewski and G. Stock, Springer, Berlin, pp 143–149 (1987).

    Chapter  Google Scholar 

  24. P. M. Vanhoutte, Effects of anoxia and glucose depletion on isolated veins of the dog, Am. J. Physiol., 230: 1261–1268 (1976).

    CAS  PubMed  Google Scholar 

  25. P. M. Vanhoutte, The end of the quest?, Nature, 327: 459–460 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. P. M. Vanhoutte, G. M. Rubanyi, V. M. Miller and D. S. Houston, Modulation of vascular smooth muscle contraction by the endothelium, Ann. Rev. Physiol., 48: 307–320 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grote, J., Siegel, G. (1990). Vascular Smooth Muscle Reactivity in Hypoxia. In: Einhäupl, K., Kempski, O., Baethmann, A. (eds) Cerebral Sinus Thrombosis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8199-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8199-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8201-0

  • Online ISBN: 978-1-4684-8199-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics