Skip to main content

Polymorphic Assemblies of Tubulin

  • Chapter
Cell and Muscle Motility

Abstract

This chapter does not deal directly with cell motility as such; rather, it focuses on various structural manifestations of tubulin, the constituent protein of microtubules. Microtubules are important components of the cytoskeleton of cells, and only recently have we begun to perceive the associations between microtubules and other components of the cytoskeleton, such as actin (Griffith and Pollard, 1978; Fujii and Tanaka, 1979). There are several reasons that polymorphic assemblies of tubulin are of interest. First, determining how such structures are formed (e.g., under what conditions) and into what they might be transformed would provide information on the assembly potential of the tubulin dimer, either with or without the associated proteins that copurify with tubulin. Second, by studying the arrangement of dimers in tubulin polymorphs, information can be obtained on the various kinds of binding interactions between dimers and possible conformational states of the molecule. The kinds of structures that can be formed, and their stability, can provide clues to the tubulin polymorphs that may exist in vivo in normal and diseased or aged cells, even though there is always uncertainty associated with the degree to which the behavior of tubulin in vitro can be extrapolated to its behavior in vivo in the cytoplasmic milieu of the living cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amos, L. A., and Baker, T. S., 1979, The three-dimensional structure of tubulin protofilaments, Nature (London) 279: 607.

    Article  Google Scholar 

  • Amos, L. A., and Klug, A., 1974, Arrangement of subunits in flagellar microtubules, J. Cell Sci 14: 523.

    Google Scholar 

  • Behnke, O., 1967, Incomplete microtubules observed in mammalian blood platelets during microtubule polymerization, J. Cell Biol 34: 697.

    Article  Google Scholar 

  • Behnke, O., 1975a, An outer component of microtubules, Nature (London) 257: 709.

    Article  Google Scholar 

  • Behnke, O., 1975b, Studies on isolated microtubules: Evidence for a clear space component, Cytobiologie 11: 366.

    Google Scholar 

  • Behnke, O., and Forer, A., 1972, Vinblastine as a cause of direct transformation of some microtubules into helical structures, Exp. Cell Res 73: 506.

    Article  Google Scholar 

  • Bensch, K. G., and Malawista, S. E., 1968, Microtubule crystals: A new biophysical phenomenon induced by Vinca alkaloids, Nature (London) 218: 1176

    Article  Google Scholar 

  • Bensch, K. G., and Malawista, S. E., 1969, Microtubular crystals in mammalian cells, J. Cell Biol 40: 95.

    Article  Google Scholar 

  • Bibring, T., and Baxandall, J., 1971, Selective extraction of isolated mitotic apparatus: Evidence that typical microtubule protein is extracted by organic mercurial. J. Cell Biol 48: 324.

    Article  Google Scholar 

  • Borisy, G. G., and Olmsted, J. B., 1972, Nucleated assembly of microtubules in porcine brain extracts, Science 177: 1196.

    Article  Google Scholar 

  • Borisy, G. G., Marcum, J. M., Olmsted, J. B., Murphy, D. B., and Johnson, K. A., 1975, Purification of tubulin and associated high molecular weight proteins from porcine brain and characterization of microtubule assembly in vitro, Ann. N. Y. Acad. Sci 253: 107.

    Article  Google Scholar 

  • Briggs, R. T., 1970, Vinblastine-induced filaments and crystals in bullfrog leukocytes and erythrocytes, J. Cell Biol 47: 25a.

    Google Scholar 

  • Briggs, R. T., 1972, Ultrastructure of bullfrog bloodfrog blood cells with special emphasis on microtubular elements, Ph. D. dissertation, University of Kansas, Lawrence.

    Google Scholar 

  • Bryan, J., 1972, Vinblastine and microtubules. II. Characterization of two protein subunits from isolated crystals, J. Mol. Biol 66: 157.

    Article  Google Scholar 

  • Bryan, J., 1974, Biochemical properties of microtubules, Fed. Proc 33: 152.

    Google Scholar 

  • Bryan, J., 1976, A quantitative analysis of microtubule elongation, J. Cell Biol 71: 749.

    Article  Google Scholar 

  • Burns, R. G., 1978, Spatial organization of the microtubule-associated proteins of reassembled brain microtubules, J. Ultrastruct. Res 65: 73.

    Article  Google Scholar 

  • Burton, P. R., 1966a, Substructure of certain cytoplasmic microtubules: An electron microscopic study, Science 154: 903.

    Article  Google Scholar 

  • Burton, P. R., 1966b, A comparative electron microscopic study of cytoplasmic microtubules and axial unit tubules in a spermatozoan and a protozoan, J. Morphol 120: 397.

    Article  Google Scholar 

  • Burton, P. R., 1970, Optical diffraction and translational reinforcement of microtubules having a prominent helical wall structure, J. Cell Biol 44: 693.

    Article  Google Scholar 

  • Burton, P. R., 1979a, Differences in binding of tannic acid and cationized ferritin to the two surfaces of protofilaments in microtubules and ribbons, J. Submicrosc. Cytol 11: 419.

    Google Scholar 

  • Burton, P. R., 1979b, Binding of cationized ferritin to in vitro polymerized microtubules and ribbon structures and studies of its ability to induce assembly of MAP-free tubulin, J. Cell Biol 83: 330a.

    Google Scholar 

  • Burton, P. R., and Fernandez, H. L., 1973. Delineation by lanthanum staining of filamentous elements associated with the surfaces of axonal microtubules, J. Cell Sci 12: 567.

    Google Scholar 

  • Burton, P. R., and Frost, L. C., 1979, Studies of diverse structures assembled from MAP-free tubulin in the presence of low molecular weight polylysine, J. Cell Biol 83: 330a.

    Google Scholar 

  • Burton, P. R., and Himes, R. H., 1978, Electron microscope studies of pH effects on assembly of tubulin free of associated proteins: Delineation of substructure by tannic acid staining, J. Cell Biol 77: 120.

    Google Scholar 

  • Burton, P. R., and Hinkley, R. E., 1974, Further electron microscopic characterization of axop-lasmic microtubules of the ventral nerve cord of the crayfish, J. Submicrosc. Cytol 6: 311.

    Google Scholar 

  • Burton, P. R., and Silveira, M., 1971, Electron microscopic and optical diffraction studies of negatively stained axial units of certain platyhelminth sperm, J. Ultrastruct. Res 36: 757.

    Article  Google Scholar 

  • Burton, P. R., Hinkley, R. E., and Pierson, G. B., 1975, Tannic acid-stained microtubules with 12, 13, and 15 protofilaments, J. Cell Biol 65: 227.

    Article  Google Scholar 

  • Chasey, D., 1972, Subunit arrangement in ciliary microtubules from Tetrahymena pyriformis, Exp. Cell Res 74: 140.

    Article  Google Scholar 

  • Cleveland, D. W., Hwo, S., and Kirschner, M. W., 1977a, Purification of tau, a microtubuleassociated protein that induces assembly of microtubules from purified tubulin, J. Mol. Biol 116: 207.

    Article  Google Scholar 

  • Cleveland, D. W., Hwo, S., and Kirschner, M. W., 1977b, Physical and chemical properties of

    Google Scholar 

  • purified tau factor and the role of tau in microtubule assembly, J Mol. Biol 116:227.

    Google Scholar 

  • Cleveland, D. W., Spiegelman, B. M., and Kirschner, M. W., 1979, Conservation of microtubule associated proteins, J. Biol. Chem 254: 12670.

    Google Scholar 

  • Cohen, C., DeRosier, D., Harrison, S. C., Stephens, R. E., and Thomas, J., 1972, X-ray patterns from microtubules, Ann. N. Y. Acad. Sci 253: 53.

    Article  Google Scholar 

  • Cohen, W. D., and Gottlieb, T., 1971, C-microtubules in isolated mitotic spindles, J . Cell Sci. 9: 603.

    Google Scholar 

  • Crepeau, R: H., McEwen, B., Dykes, G., and Edelstein, S. J., 1977, Structural studies on porcine brain tubulin in extended sheets, J. Mol. Biol 116: 301.

    Google Scholar 

  • De Brabander, M., De Mey, J., Joniau, M., and Geuens, G., 1977, Ultrastructural immunocytochemical distribution of tubulin in cultured cells treated with microtubule inhibitors, Cell Biol. Int. Rep 1: 177.

    Article  Google Scholar 

  • De Mey, J., De Brabander, M., Joniau, M., Hoebeke, J., and Geuens, G., 1976, Immunoperoxidase visualization of microtubules and microtubular proteins, Nature (London) 264: 273.

    Article  Google Scholar 

  • Dentier, W. L., Granett, S., and Rosenbaum, J. L., 1975, Ultrastructural localization of the high molecualr weight proteins associated with in vitro-assembled brain microtubules. J. Cell Biol 65: 237.

    Article  Google Scholar 

  • Donoso, J. A., Haskins, K. M., and Himes, R. H., 1979, Effect of microtubule-associated proteins on the interaction of vincristine with microtubules and tubulin, Cancer Res. 39: 1604.

    Google Scholar 

  • Dustin, P., 1978, Microtubules, Springer-Verlag, Heidelberg.

    Book  Google Scholar 

  • Erickson, H. P., 1974a, Microtubule surface lattice and subunit structure and observations on reassembly, J. Cell Biol 60: 153.

    Article  Google Scholar 

  • Erickson, H. P., 1974b, Assembly of microtubules from preformed, ring-shaped protofilaments and 6-S tubulin, J. Supramol. Struct 2: 393.

    Article  Google Scholar 

  • Erickson, H. P., 1975, Negatively stained vinblastine aggregates, Ann. N. Y. Acad. Sci 253: 51.

    Article  Google Scholar 

  • Erickson, H. P., 1976, Facilitation of microtubule assembly by polycations, in: Cell Motility ( R. Goldman, T. Pollard, and J. Rosenbaum, eds.), pp. 1069 - 1080, Cold Spring Harbor Labora-tory, Cold Spring Harbor, New York.

    Google Scholar 

  • Erickson, H. P., and Voter, W. A., 1976, Polycation-induced assembly of purified tubulin, Proc. Natl. Acad. Sci. U.S.A 73: 2813.

    Article  Google Scholar 

  • Fellous, A., Francon, J., Lennon, A. M., and Nunez, J., 1977, Microtubule assembly in vitro: Purification of assembly-promoting factors, Eur. J. Biochem 78: 167.

    Article  Google Scholar 

  • Frigon, R. P., and Timasheff, S. N., 1975, Magnesium-induced self-association of calf brain tubulin. I. Stoichiometry, Biochemistry 14: 4559.

    Article  Google Scholar 

  • Fujii, T., and Tanaka, R., 1979, Interaction of rat brain microtubule proteins and 6 S tubulin with rabbit skeletal muscle actomyosin, Life Sci. 24: 1683.

    Article  Google Scholar 

  • Fujiwara, K., and Tilney, L. G., 1975, Substructural analysis of the microtubule and its polymorphic forms, Ann. N. Y. Acad. Sci 253: 27.

    Article  Google Scholar 

  • Gaskin, F., Kramer, S. B., Cantor, C. R., Adelstein, R., and Shelanski, M. L., 1974, A dynein-like protein associated with neurotubules, FEBS Lett. 40: 281.

    Article  Google Scholar 

  • Gregory, D. W., and Pirie, B. J. S., 1973, Wetting agents for biological electron microscopy, J. Microsc 99: 261.

    Google Scholar 

  • Griffith, L. M., and Pollard, T. D., 1978, Evidence for actin filament-microtubule interaction mediated by microtubule-associated proteins, J. Cell Biol 78: 958.

    Article  Google Scholar 

  • Grimstone, A. V., and Klug, A., 1966, Observations on the substructure of flagellar fibers, J. Cell Sci 1: 351.

    Google Scholar 

  • Hauser, M., and Schwab, D., 1974, Mikrotubuli und helikale Mikrofilamente im Cytoplasma der Foraminifere Allogromia laticollaris Arnold, Cytobiologie 9: 263.

    Google Scholar 

  • Herzog, W., and Weber, K., 1978, Microtubule formation by pure brain tubulin in vitro. The influence of dextran and poly(ethylene glycol), Eur. J. Biochem 91: 249.

    Article  Google Scholar 

  • Himes, R. H., Burton, P. R., Kersey, R. N., and Pierson, G. B., 1976a, Brain tubulin polymeriza- tion in the absence of “microtubule associated proteins, Proc. Natl. Acad. Sci. U.S.A 73: 4397.

    Article  Google Scholar 

  • Himes, R. H., Kersey, R. N., Heller-Bettinger, I., and Samson, F. E., 1976b, Action of the Vinca alkaloids vincristine, vinblastine, and desacetyl vinblastine amide on microtubules in vitro, Cancer Res. 36: 3798.

    Google Scholar 

  • Himes, R. H., Burton, P. R., and Gaito, J. M., 1977, Dimethyl sulfoxide-induced self-assembly of tubulin lacking associated proteins, J. Biol. Chem 252: 6222.

    Google Scholar 

  • Hinkley, R. E., 1976, Microtubule-macrotubule transformations induced by volatile anesthetics, J. Ultrastruct. Res 57: 237.

    Article  Google Scholar 

  • Hinkley, R. E., and Samson, F. E., 1974, The effects of an elevated temperature, colchicine, and vinblastine on axonal microtubules of the crayfish (Procambarus clarkii), J. Exp Zool 188: 321.

    Article  Google Scholar 

  • Jacobs, M., Bennett, P. M., and Dickens, M. J., 1975a, Duplex microtubule is a new form of tubulin assembly induced by polycations, Nature (London) 257: 707.

    Article  Google Scholar 

  • Jacobs, M., Caplow, M., Bennett, P. M., and Dickens, M. J., 1975b, Studies on microtubule assembly, in: Microtubules and Microtubule Inhibitors ( M. Borgers and M. De Brabander, eds.), pp. 115 - 125, North-Holland, Amsterdam.

    Google Scholar 

  • Jensen, C., and Bajer, A., 1973, Spindle dynamics and arrangement of microtubules, Chromosoma 44: 73.

    Article  Google Scholar 

  • Kim, H., Binder, L. I., and Rosenbaum, J. L., 1979, The periodic association of MAP2 with brain microtubules in vitro, J. Cell Biol 80: 266.

    Article  Google Scholar 

  • Kirkpatrick, J. B., Hyams, L., Thomas, V. L., and Howley, P. M., 1970, Purification of intact microtubules from brain, J. Cell Biol 47: 389.

    Article  Google Scholar 

  • Kirschner, M. W., and Williams, R. C., 1974, The mechanism of microtubule assembly in vitro, J. Supramol. Struct 2: 412.

    Article  Google Scholar 

  • Kirschner, M. W., Williams, R. C., Weingarten, M., and Gerhart, J. C., 1974, Microtubules from mammalian brain: Some properties of their depolymerization products and a proposed mechanism of assembly and disassembly, Proc. Natl. Acad. Sci. U.S.A 71: 1159.

    Article  Google Scholar 

  • Kirschner, M. W., Honig, L. S., and Williams, R. C., 1975, Quantitative electron microscopy of 6-S tubulin, J. Supramol. Struct 2: 393.

    Google Scholar 

  • Krishan, A., and Hsu, D., 1969, Observations on the association of helical polyribosomes and filaments with vincristine-induced crystals in Earle’s L-cell fibroblasts, J. Cell Biol 43: 553.

    Article  Google Scholar 

  • Kuznetsov, S. A., Gelfand, V. I., Rodionov, V. I., Rosenblat, V. A., and Gulvaeva, J. G., 1978, Polymerization of purified tubulin by synthetic polycations, FEBS Lett. 95: 343.

    Google Scholar 

  • Langford, G. M., 1978, In vitro assembly of dogfish brain tubulin and the induction of coiled ribbon polymers by calcium, Exp. Cell Res 111: 139.

    Google Scholar 

  • Larsson, H., Wallin, M., and Edstrom, A., 1976, Induction of a sheet polymer of tubulin by Zn2, Exp. Cell Res 100: 104.

    Article  Google Scholar 

  • Ledbetter, M. C., and Porter, K. R., 1963, A microtubule in plant fine structure, J. Cell Biol 19: 239.

    Article  Google Scholar 

  • Lee, J. C., and Timasheff, S. N., 1975, The reconstitution of microtubules from purified calf brain tubulin, Biochemistry 14: 5183.

    Article  Google Scholar 

  • Lewis, J. C., and Burton, P. R., 1977, Ultrastructural studies of the superior cervical trunk of the mouse: Distribution, cytochemistry, and stability of fibrous elements in preganglionic fibers, J. Comp. Neurol 171: 605.

    Article  Google Scholar 

  • Mandelkow, E., and Mandelkow, E., 1979, Junctions between microtubule walls, J. Mol. Biol 129: 135.

    Article  Google Scholar 

  • Marantz, R., and Shelanski, M. L., 1970, Structure of microtubular crystals induced by vinblastine in vitro, J. Cell Biol 44: 234.

    Article  Google Scholar 

  • Markham, R., Frey, S., and Hills, G. J., 1963, Methods for the enhancement of image detail and accentuation of structure in electron microscopy, Virology 20: 88.

    Article  Google Scholar 

  • Matsumura, F., and Hayashi, M., 1976, Polymorphism of tubulin assembly: In vitro formation of sheet, twisted ribbon and microtubule, Biochim. Biophys. Acta 453: 162.

    Article  Google Scholar 

  • Mohri, H., 1976, The function of tubulin in motile systems, Biochim. Biophys. Acta 456: 85

    Article  Google Scholar 

  • Murphy, D. B., and Borisy, G. G., 1975, Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro, Proc. Natl. Acad. Sci. U.S.A 72: 2696.

    Article  Google Scholar 

  • Nagano, T., and Suzuki, F., 1975, Microtubules with 15 subunits in cockroach epidermal cells, J. Cell Biol 64: 242.

    Article  Google Scholar 

  • Ochs, R. L., and Burton, P. R., 1978, Ultrastructural and biochemical characterization of the crayfish nerve cord axoplasmic matrix, J . Cell Biol. 79: 295a.

    Google Scholar 

  • Olmsted, J. B., Marcum, J. M., Johnson, K. A., Allen, C., and Borisy, G. G., 1974, Microtubule assembly: Some possible regulatory mechanisms, J . Supramol. Struct. 2: 429.

    Article  Google Scholar 

  • Pierson, G. B., Burton, P. R., and Himes, R. H., 1978, Alterations in number of protofilaments in microtubules assembled in vitro, J . Cell Biol. 76: 223.

    Article  Google Scholar 

  • Pierson, G. B., Burton, P. R., and Himes, R. H., 1979, Wall substructure of microtubules polymerized in vitro from tubulin of crayfish nerve cord and fixed with tannic acid, J. Cell Sci 39: 89.

    Google Scholar 

  • Raff, E. C., 1979, The control of microtubule assembly in vivo, Int. Rev. Cytol 59: 1.

    Article  Google Scholar 

  • Roth, L. E., and Shigenaka, Y 1970, Microtubules in the helizoan axopodium. II. Rapid degradation by cupric and nickelous ions, J. Ultrastruct. Res 31: 356.

    Article  Google Scholar 

  • Schechter, J., Yancey, B., and Weiner, R., 1976, Response of tanycytes of rat median eminence to intraventricular administration of colchicine and vinblastine, Anat. Rec 184: 233.

    Article  Google Scholar 

  • Schnepf, E., and Deichgraber, G., 1976, The effects of colchicine, ethionine, and deuterium oxide on microtubules in young Sphagnum leaflets, Cytobiologie 13: 341.

    Google Scholar 

  • Schochet, S. S., Lampert, P. W., and Earle, K. M., 1968, Neuronal changes induced by intrathecal vincristine sulfate, J. Neuropathol. Exp. Neurol 27: 645.

    Article  Google Scholar 

  • Shelanski, M. L., and Taylor, E. W., 1968, Properties of the protein subunit of central pair and outer-doublet microtubules of sea urchin flagella, J. Cell Biol 38: 304.

    Article  Google Scholar 

  • Sloboda, R. D., Rudolph, S. A., Rosenbaum, J. L., and Greengard, P., 1975, Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein, Proc. Natl. Acad. Sci. U.S.A 72: 177.

    Article  Google Scholar 

  • Sloboda, R. D., Dentier, W. L., and Rosenbaum, J. L., 1976a, Microtubule-associated proteins and the stimulation of tubulin assembly in vitro, Biochemistry 15: 4497.

    Article  Google Scholar 

  • Sloboda, R. D., Dentier, W. L., Bloodgood, R. A., Telzer, B. R., Granett, S., and Rosenbaum, J. L.,

    Google Scholar 

  • B, Microtubule-associated proteins (MAPs) and the assembly of microtubules in vitro,in Cell Motility (R. Goldman, T. Pollard, and J. Rosenbaum, eds.), pp. 1171-1212, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Starling, D., 1976. Two ultrastructurally distinct tubulin paracrystals induced in sea-urchin eggs by vinblastine sulphate, J. Cell Sci. 20:79.

    Google Scholar 

  • Stephens, R. E., and Edds, K. T., 1976, Microtubules: Structure, chemistry, and function, Physiol. Rev 56: 709 - 777.

    Google Scholar 

  • Tamm, L. K., Crepeau, R., and Edelstein, S. J., 1979, Three-dimensional reconstruction of tubulin in zinc-induced sheets, J. Mol. Biol 130: 473.

    Article  Google Scholar 

  • Thomas, M. B., 1970, Transitions between helical and protofibrillar configurations in doublet and singlet microtubules in spermatozoa of Stylochus zebra (Turbellaria, Polycladida), Biol. Bull 138: 219.

    Article  Google Scholar 

  • Thomas, M. B., and Henley, C., 1971, Substructure of the cortical singlet microtubules in spermatozoa of Macrostomum (Platyhelminthes, Turbellaria) as revealed by negative staining, Biol. Bull. 141:592.

    Article  Google Scholar 

  • Tilney, L. G., and Porter, K. R., 1967, Studies on the microtubules in Heliozoa. II. The effect of low temperature on these structures in the formation and maintenance of the axopodia, J. Cell Biol 34: 327.

    Article  Google Scholar 

  • Tilney, L. G., Bryan, J., Bush, D. J., Fujiwara, K., Mooseker, M. S., Murphy, D. B., and Snyder, D. H., 1973, Microtubules: Evidence for 13 protofilaments, J. Cell Biol 59: 267.

    Article  Google Scholar 

  • Tyson, G. E., and Bulger, R. E., 1973, Vinblastine-induced paracrystals and unusually large microtubules (macrotubules) in rat renal cells, Z. Zellforsch 141: 443.

    Article  Google Scholar 

  • Vallee, R. B., and Borisy, G. G., 1978, The non-tubulin component of microtubule protein oligomers, J. Biol. Chem 253: 2834.

    Google Scholar 

  • Voter, W. A., and Erickson, H. P., 1979, Tubulin rings: Curved filaments with limited flexibility and two modes of association, J . Supramol. Struct. 10: 419.

    Article  Google Scholar 

  • Warfield, R. K. N., and Bouck, G. B., 1974, Microtubule-macrotubule transitions: Intermediates after exposure to the mitotic inhibitor vinblastine, Science 186:1219.

    Google Scholar 

  • Warfield, R. K. N., and Bouck, G. B., 1975, On macrotubule structure, J . Mol. Biol. 93: 117.

    Article  Google Scholar 

  • Weingarten, M. D., Lockwood, A. H., Hwo, S., and Kirschner, M. W., 1975, A protein factor essential for microtubule assembly, Proc. Natl. Acad. Sci. U.S.A 72: 1858.

    Article  Google Scholar 

  • Weisenberg, R. C., 1974, The role of ring aggregates ano other structures in the assembly of microtubules, J. Supramol. Struc 2: 451.

    Article  Google Scholar 

  • White, J. G., 1968, Effects of colchicine and vinca alkaloids on human platelets, Am. J. Pathol 53: 447.

    Google Scholar 

  • Wilson, L., Bryan, J., Ruby, A., and Mazia, D., 1970, Precipitation of proteins by vinblastine and calcium ions, Proc. Natl. Acad. Sci. U.S.A 66: 807.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Burton, P.R. (1981). Polymorphic Assemblies of Tubulin. In: Dowben, R.M., Shay, J.W. (eds) Cell and Muscle Motility. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8196-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8196-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8198-3

  • Online ISBN: 978-1-4684-8196-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics