Skip to main content

The Role of Intermediate (10-nm) Filaments in the Development and Integration of the Myofibrillar Contractile Apparatus in the Embryonic Mammalian Heart

  • Chapter
Cell and Muscle Motility

Abstract

Most eukaryotic cells possess three major distinct classes of fibrous organelles that are independently organized and function as elements of the cytoskeleton. These elements of the cytoskeleton include microtubules (25 nm), which form elaborate cytoplasmic networks; actin or thin filaments (6 nm), which form cytoplasmic stress fibers; and the intermediate filaments (10 nm). The term “intermediate” filaments has been applied to this third class of cytoplasmic fibrous proteins because their mean diameter at the ultrastructural level lies between the mean diameter of actin and microtubules. Investigations have shown that both actin (Clarke and Spudeck, 1977; Pollard and Werhing, 1974; Stossel, 1978) and microtubules (Stephens and Edds, 1976) are involved in various aspects of cell motility and also in the movement of cellular organelles. The role of the intermediate filaments in cell function is unresolved at present. The intermediate filaments were initially regarded as a disaggregation, or degradation product, or myosin and/or microtubules and thus until recently attracted little attention. Current biochemical and immunofluorescent methods have established the intermediate filaments as a distinct class of cytoplasmic proteins that differ with respect to the physical properties of their subunits. In contrast to the proteins actin and tubulin, which are the major structural protein subunits of microfilaments and microtubules, respectively, the intermediate-filament proteins do not appear to be highly conserved (Bennett et al., 1979; Lazarides and Balzer, 1978; Shelanski and Liem, 1979) and exhibit a relatively high degree of tissue specificity. The intermediate filaments have been divided into several subclasses on the basis of biochemical and immunochemical data, and their constituent proteins have been named accordingly. These subclasses at present include: (1) prekeratin tonofilaments found in epithelial cells (Franke et al.,1978a,b, 1979b; Sun et al., 1979) and cells of epithelial origin; (2) vimentin or decamin filaments (Bennett et al., 1978b, 1979; Franke et al.,1978a, 1979a) found in fibroblasts and other cells of mesenchymal orgin; (3) desmin filaments (Izant and Lazarides, 1974; Lazarides and Hubbard, 1976; Lazarides, 1978a; Lazarides and Balzer, 1978) or skeletin (Campbell et al.,1979) of smooth muscle, which have also been identified in the cytoplasm and Z lines of skeletal and cardiac muscle; (4) neurofilaments of neurons; and (5) glial filaments, which are present in astrocytes (Shelanski and Liem, 1979) but not in all types of glial cells (Liem et al., 1978; Schlaepfer, 1977; Schlaepfer and Lynch, 1977). Current studies have shown that it is not uncommon to find two of these classes of intermediate filaments coexisting in the same cell type. It is also quite possible that more than two classes of intermediate filaments can be present in a single cell type (Lazarides, 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, E. R., and Pepe, F. A., 1965, Ultrastructure of developing muscle cells in the chick embryo, Am. J. Anat. 116: 115.

    Article  Google Scholar 

  • Behrendt, H., 1977, Effect of anabolic steroids on rat heart muscle cells. I. Intermediate filaments, Cell Tissue Res. 180: 303.

    Article  Google Scholar 

  • Bennett, G. S., Fellini, S. A., and Holtzer, H., 1978a, Immunofluorescent visualization of 100, filaments in different cultured chick embryo cell types, Differentiation 12: 71.

    Article  Google Scholar 

  • Bennett, G. S., Fellini, S. A., Croop, J. M., Otto, J. J., Bryant, J., and Holtzer, H., 1978b, Differences among 100A-filament subunits from different cell types, Proc. Natl. Acad. Sci. U.S.A. 75: 4364.

    Article  Google Scholar 

  • Bennett, G. S., Fellini, S. A., Toyama, Y., and Holtzer, H., 1979, Redistribution of intermediate filament subunits during skeletal myogenesis and maturation in vitro, J. Cell Biol. 82: 577.

    Article  Google Scholar 

  • Bignami, A., Eng, L. F., Dahl, D., and Uyeda, C. T., 1972, Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence, Brain Res. 43: 429.

    Article  Google Scholar 

  • Blose, S. H., and Chacho, S. J., 1976, Rings of intermediate (100A) filament bundles in the perinuclear region of vascular endothelial cells: Their mobilization by colcemid and mitosis, J. Cell Biol. 70: 459.

    Article  Google Scholar 

  • Blose, S. H., Shelanski, M. L., and Chacho, S., 1977, Localization of bovine brain filament antibody on intermediate (100A) filaments in guinea pig vascular endothelial cells and chick cardiac muscle cells, Proc. Natl. Acad. Sci. U.S.A. 74: 662.

    Article  Google Scholar 

  • Bollon, A. P., Nath, K., and Shay, J. W., 1977, Establishment of contracting heart muscle cell cultures, Tissue Culture Assoc. Man. 3: 637.

    Google Scholar 

  • Campbell, G. R., Campbell, J. C., Stewart, U. G., Small, J. V., and Anderson, P., 1979, Antibody staining of 10 nm (100-A) filaments in cultured cardiac and skeletal muscle cells, J. Cell Sci. 37: 303.

    Google Scholar 

  • Caron, J. M., and Berlin, R. D., 1979, Interaction of microtubule proteins with phospholipid vesicles, J. Cell Biol. 81: 665.

    Article  Google Scholar 

  • Clarke, M., and Spudeck, J. A., 1977, Nonmuscle contractile proteins: The role of actin and myosin in cell motility and shape determination, Annu. Rev. Biochem. 46: 797.

    Article  Google Scholar 

  • Cooke, P. H., 1976, A filamentous cytoskeleton in vertebrate smooth muscle fibers, J. Cell Biol. 68: 539.

    Article  Google Scholar 

  • Cooke, P. H., and Chase, R. H., 1971, Potassium chloride-insoluble myofilaments in vertebrate smooth muscle cells, Exp. Cell Res. 66: 417.

    Article  Google Scholar 

  • Davison, P. F., and Winslow, B., 1974, The protein subunit of calf brain neurofilament, Neurobiology 5: 119.

    Article  Google Scholar 

  • Eckert, B. S., Koons, S. J., Schantz, A. W., and Zobel, C. R., 1980, Association of creatine phosphokinase with the cytoskeleton of cultured mammalian cells, J. Cell Biol. 86: 1.

    Article  Google Scholar 

  • Eng, L. F., Vanderhaeghen, J. J., Bignami, A., and Gerstl, B., 1971, An acidic protein isolated from fibrous astrocytes, Brain Res. 28: 351.

    Article  Google Scholar 

  • Eriksson, A., and Thornell, L.-E., 1979, Intermediate (skeletin) filaments in heart Purkinje fibers: A correlative morphological and biochemical identification with evidence of a cytoskeletal function, J. Cell Biol. 80: 231.

    Article  Google Scholar 

  • Eriksson, A., Thornell, L.-E., and Stigbrand, T., 1977, Cytoskeletal filaments of heart conducting system localized by antibody against 55,000 dalton protein, Experientia 34: 792.

    Article  Google Scholar 

  • Feit, H., Neudeck, U., and Shay, J. W., 1977, Anomalous electrophoretic properties of brain filament protein subunits, Brain Res. 133: 341.

    Article  Google Scholar 

  • Ferrans, V. J., and Roberts, W. C., 1973, Intermyofibrillar and nuclear myofibrillar connections in human and canine myocardium: An ultrastructure study, J, Mol. Cell. Cardiol. 5: 247.

    Article  Google Scholar 

  • Franke, W. W., Schmid, E., Osborn, M., and Weber, K., 1978a, Different intermediate-sized filaments distinguished by immunofluorescence microscopy, Proc. Natl. Acad. Sci. U.S.A. 75: 5034.

    Article  Google Scholar 

  • Franke, W. W., Weber, K., Osborn, M., Schmid, E., and Freudenstein, C., 1978b, Antibody to prekeratin: Decoration of tonofilament-like arrays in various cells of epithelial character, Exp. Cell Res. 116: 429.

    Article  Google Scholar 

  • Franke, W. W., Schmid, E., Osborn, M., and Weber, K., 1979a, Intermediate-sized filaments of human endothelial cells, J. Cell Biol. 81: 570.

    Article  Google Scholar 

  • Franke, W. W., Schmid, E., Weber, K., and Osborn, M., 1979, Hela cells contain intermediate-sized filaments of the prekeratin type, Exp. Cell Res. 118: 95.

    Article  Google Scholar 

  • Fuseler, J. W., 1975, Temperature dependence of anaphase chromosome velocity and microtubule depolymerization rate, J. Cell Biol. 89: 737.

    Google Scholar 

  • Garamvölgyi, N., 1965, Inter-Z-bridges in the flight muscle of the bee, J. Ultrastruct. Res. 13: 435.

    Article  Google Scholar 

  • Gard, D. L., Bell, P. B., and Lazarides, E., 1979, Coexistence of desmin and the fibroblastic intermediate filament subunit in muscle and non-muscle cells: Identification and comparative peptide analysis, Proc. Natl. Acad. Sci. U.S.A. 76: 3894.

    Article  Google Scholar 

  • Goldman, R. D., and Knipe, D. M., 1973, Functions of cytoplasmic fibers in non-muscle cell motility, in: The Mechanism of Muscle Contraction, Cold Spring Harbor Symp. Quant. Biol. 37: 523. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Granger, B. L., and Lazarides, E., 1978, The existence of an insoluble Z disc scaffold in chicken skeletal muscle, Cell 15: 1253.

    Article  Google Scholar 

  • Granger, B. L., and Lazarides, E., 1979, Desmin and vimentin coexist at the periphery of myofibril Z disc, Cell 18: 1053.

    Article  Google Scholar 

  • Granger, B. L., Gard, D. L., and Lazarides, E., 1979, The coexistence of desmin and vimentin in developing and mature chicken skeletal muscle and their association with myofibril disks, J. Cell Biol. 83: 314a.

    Google Scholar 

  • Gudrun, B. S., Fellini, S. A., Toyama, Y, and Holtzer, H., 1979, Redistribution of intermediate filament subunits during skeletal myogenesis and maturation in vitro, J. Cell Biol. 82: 577.

    Article  Google Scholar 

  • Holtrap, M. E., Raisz, L. G., and Simmons, H. A., 1974, The effects of parathyroid hormone, colchicine, and calcitonin on the ultrastructure and the activity of osteoclasts in organ culture, J. Cell Biol. 60: 346.

    Article  Google Scholar 

  • Holtzer, H., Sanger, J., Ishikawa, H., and Strahxi, K., 1973, Selected topics in myogenesis, Cold Spring Harbor Symp. Quant. Biol. 37: 549.

    Article  Google Scholar 

  • Holtzer, H., Croop, J., Dienstman, S., and Somlyo, A. P., 1975, Effects of cytochalasin and colcemid on myogenic cultures, Proc. Natl. Acad Sci. U.S.A. 72: 513.

    Article  Google Scholar 

  • Hubbard, B. D., and Lazarides, E., 1979, Copurification of actin and desmin from chicken smooth muscle and their copolymerization in vitro to intermediate filaments, J. Cell Biol. 80: 166.

    Article  Google Scholar 

  • Inoué, S., and Ritter, H., Jr., 1975, Dynamics of mitotic spindle organization and function, in: Molecules and Cell Movements ( S. Inoue and R. E. Stephens, eds.), pp. 3–30, Raven Press, New York.

    Google Scholar 

  • Ishikawa, H., Bischoff, R., and Holtzer, H., 1968, Mitosis and intermediate-sized filaments in developing skeletal muscle, J. Cell Biol. 38: 538.

    Article  Google Scholar 

  • Ishikawa, H., Bischoff, R., and Holtzer, H., 1969, Formation of arrowhead complexes with heavy meromyosin in a variety of cell types, J. Cell Biol. 43: 312.

    Article  Google Scholar 

  • Izant, J. G., and Lazarides, E., 1974, Invariance and heterogeneity in the major structural and regulatory proteins of chick muscle cells revealed by two-dimensional gel electrophoresis, Proc. Natl. Acad. Sci. U.S.A. 74: 1450.

    Article  Google Scholar 

  • Jacobus, W. E., and Lehninger, A. L., 1973, Creatine kinase of rat heart mitochondria, J. Biol. Chem. 248: 4803.

    Google Scholar 

  • Kelly, D. E., 1969, Myofibrillogenesis and Z-band differentiation, Anat. Rec. 163:403.

    Article  Google Scholar 

  • Knappeis, G. G., and Carlsen, F., 1962, The ultrastructure of the Z disc in skeletal muscle, J. Cell Biol. 13: 323.

    Article  Google Scholar 

  • Lazarides, E., 1978a, The distribution of desmin (100 A) filaments in primary cultures of embryonic chick cardiac cells, Exp. Cell Res. 112: 265.

    Article  Google Scholar 

  • Lazarides, E., 1978b, Comparison of the structure, distribution and possible function of desmin (100 A) filaments in various types of muscle and non muscle cells, Birth Defects Orig. Artic. Ser. 14: 41.

    Google Scholar 

  • Lazarides, E., 1980, Intermediate filaments as mechanical integrators of cellular space, Nature (London 283: 249.

    Article  Google Scholar 

  • Lazarides, E., and Balzer, D. R., Jr., 1978, Specificity of desmin to avian and mammalian cells, Cell 14: 429.

    Article  Google Scholar 

  • Lazarides, E., and Granger, B. L., 1978, Fluorescent localization of membrane sites in glycerinated chicken skeletal muscle fibers and the relationship of these sites to the protein composition of the Z disk, Proc. Natl. Acad. Sci. U.S.A. 75: 3683.

    Article  Google Scholar 

  • Lazarides, E., and Hubbard, B. D., 1976, Immunological characterization of the subunit of the 100 A filaments from muscle cells, Proc. Natl. Acad. Sci. U.S.A. 73: 4344.

    Article  Google Scholar 

  • Lazarides, E., and Revel, J. P., 1979, The molecular basis of cell movement, Sci. Am. 240: 100.

    Article  Google Scholar 

  • Lazarides, E., and Weber, K., 1974, Actin antibody: The specific visualization of actin filaments in non-muscle cells, Proc. Natl. Acad. Sci. U.S.A. 71: 2268.

    Article  Google Scholar 

  • Liem, R. K. H., Yen, S.-H., Salomon, G. D., and Shelanski, M. L., 1978, Intermediate filaments in nervous tissue, J. Cell Biol. 79: 637.

    Article  Google Scholar 

  • McEwen, B. S., and Grafstein, B., 1968, Fast and slow components in axonal transport of protein, J. Cell Biol. 38: 494.

    Article  Google Scholar 

  • Miller, C. L., Fuseler, J. W., and Brinkley, B. R., 1977, Cytoplasmic microtubules in transformed mouse x nontransformed human cell hybrids: Correlation with in vitro growth, Cell 12: 319.

    Article  Google Scholar 

  • Morris, G. F., Cooke, A., and Cole, R. J., 1972, Isoenzymes of creatine phosphokinase during myogenesis in vitro, Exp. Cell. Res. 74: 582.

    Article  Google Scholar 

  • Nandy, K., and Bourne, G. H., 1963, A study of the morphology of the conducting tissue in mammalian hearts, Acta Anat. 53: 217.

    Article  Google Scholar 

  • Nath, K., Shay, J. W., and Bollon, A. P., 1978, Relationship between dibutyryl cyclic AMP and microtubule organization in contracting heart muscle cells, Proc. Natl. Acad. Sci. U.S.A. 75: 319.

    Article  Google Scholar 

  • Ochs, S., 1972, Fast transport of materials in mammalian nerve fibers, Science 176: 252.

    Article  Google Scholar 

  • O’Farrell, P. H., 1975, High resolution two-dimensional electrophoresis of proteins, J. Biol. Chem. 250: 4007.

    Google Scholar 

  • Olden, K., and Yamada, K. M., 1977, Direct detection of antigens in sodium dodecyl sulfatepolyacrylamide gels, Anal. Biochem. 78: 483.

    Article  Google Scholar 

  • Oliphant, L. W., and Loewen, R. D., 1976, Filament systems in Purkinje cells of the sheep heart: Possible alteration of myofibrillogenesis, J. Mol. Cell Cardiol. 8: 679.

    Article  Google Scholar 

  • Osborn, M., Franke, W., and Weber, K., 1980, Direct demonstration of the presence of two immunologically distinct intermediate sized filament systems in the same cell by double immunofluorescence microscopy, Exp. Cell Res. 125: 37.

    Article  Google Scholar 

  • Page, E., Power, B., Fozzard, H. A., and Meddoff, D. A., 1969, Sarcolemmal evaginations with knob-like or stalked projections in Purkinje fibers of the sheep’s heart, J. Ultrastruct. Res. 28: 288.

    Article  Google Scholar 

  • Pollard, T. D., and Werhing, R. R., 1974, Actin and myosin and cell movement, CRC Grit. Rev. Biochem. 2: 1.

    Article  Google Scholar 

  • Rash, J. E., Shay, J. W., and Besele, J. J., 1968, Urea extraction of Z bands, intercalated disks, and desmosomes, J. Ultrastruct. Res. 24: 181.

    Article  Google Scholar 

  • Rash, J. E., Biesele, J. J., and Gey, G. O., 1970, Three classes of filaments in cardiac differentiation, J. Ultrastruct. Res. 33: 408.

    Article  Google Scholar 

  • Salmon, E. D., 1975, Spindle microtubules: Thermodynamics of in vitro assembly and role in chromosome movement, Ann. N. Y. Acad. Sci. 253: 383.

    Article  Google Scholar 

  • Schlaepfer, W. W., 1977, Immunological and ultrastructural studies of neurofilaments isolated from rat peripheral nerve, J. Cell Biol. 74: 226.

    Article  Google Scholar 

  • Schlaepfer, W. W., and Lynch, R. G., 1977, Immunofluorescence studies of neurofilaments in the rat and human peripheral and central nervous systems, J. Cell Biol. 74: 241.

    Article  Google Scholar 

  • Schollmeyer, J. V., Furcht, L. T., Goll, D. E., Robson, R. M., and Stromer, M. H., 1976, Localization of contractile proteins in smooth muscle cells and in normal and transformed fibroblast, in: Cell Motility, Book A ( R. D. Goldman, T. D. Pollard, and J. Rosenbaum, eds.), p. 364. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Sharov, V. G., Saks, V. A., Smirnov, U. S., and Chazov, E. I., 1977, An electron microscopic histochemical investigation of the localization of creatine phosphokinase in heart cells, Biochim. Biophys. Acta 468: 495.

    Article  Google Scholar 

  • Shelanski, M. L., and Liem, R. K. H., 1979, Neurofilaments, J. Neurochem. 33: 5.

    Article  Google Scholar 

  • Small, J. V., 1977, Contractile units in vertebrate smooth muscle cells, Nature (London) 249: 324.

    Article  Google Scholar 

  • Small, J. V., and Sobieszek, A., 1977, Studies on the function and composition of the 10 mm (100-A) filaments of vertebrate smooth muscle, J. Cell Sci. 23: 243.

    Google Scholar 

  • Somlyo, A. P., Devine, C. E., Somlyo, A. V., and Rice, R. V., 1973, Filament organization in vertebrate smooth muscle, Philos. Trans. R. Soc. London Ser. B 265: 223.

    Article  Google Scholar 

  • Stephens, R. E., 1975, High resolution SDS-polyacrylamide gel electrophoresis: Fluorescent visualization and electrophoretic elution-concentration of protein bands, Anal. Biochem. 65: 369.

    Article  Google Scholar 

  • Stephens, R. E., and Edds, K. T., 1976, Microtubules: Structure, chemistry, and function, Physiol. Rev. 56: 709.

    Google Scholar 

  • Stossel, T. P., 1978, Contractile proteins in cell structure and function, Annu. Rev. Med. 29: 427.

    Article  Google Scholar 

  • Strehler, E. E., Pilloni, G., Heizman, C. W., and Eppenberger, H. M., 1979, M-protein in chicken cardiac muscle, Exp. Cell Res. 124: 39.

    Article  Google Scholar 

  • Sun, T.-T., Shih, C., and Green, H., 1979, Keratin cytoskeletons in epithelial cells of internal organs, Proc. Natl. Acad. Sci. U.S.A. 76: 2813.

    Article  Google Scholar 

  • Thornell, L.-E., 1973, Evidence of an imbalance in the synthesis and degradation of myofibrillar proteins in rabbit Purkinje fibers: An electron microscope study, J. Ultrastruct. Res. 44: 85.

    Article  Google Scholar 

  • Thornell, L.-E., 1974, An ultrahistochemical study on glycogen in cow Purkinje fibers, J. Mol. Cell. Cardiol. 6: 439.

    Article  Google Scholar 

  • Turner, D. C., and Eppenberger, H. M., 1973, Developmental changes in creatine kinase and aldolase isoenzymes and their possible association with contractile elements, Enzyme (Basel) 15: 224.

    Google Scholar 

  • Tuszynski, B. P., Frank, E. D., Damsky, C. H., Buck, C., and Warren, L., 1979, The detection of smooth musde desmin-like protein in BHK21/C13 fibroblasts, J. Biol. Chem. 254: 6138.

    Google Scholar 

  • Uehara, Y., Campbell, G. R., and Burnstock, G., 1971, Cytoplasmic filaments in developing and adult vertbrate smooth muscle, J. Cell Biol. 50: 484.

    Article  Google Scholar 

  • Ullrick, W. C., Toselli, P. A., Saide J., and Phear, W. P. C., 1977, Fine structure of the Z-disc, J. Mol. Biol. 115: 61.

    Article  Google Scholar 

  • Viraǵh, S., and Chalice, C. E., 1969, Variations in filamentous and fibrillar organization, and associated sarcolemmal structures, in cells of the normal mammalian heart, J. Ultrastruct. Res. 28: 321.

    Article  Google Scholar 

  • Wallimann, I., Turner, D. C., and Eppenberger, H. M.. 1978a, Localization of creatine kinase isoenzyme in myofibrils. I. Chicken skeletal muscle, J. Cell Biol. 75: 297.

    Article  Google Scholar 

  • Wallimann, T. H., Kuhn, J., Pelloni, G., Turner, D. C., and Eppenberger, H. M., 1978b, Localization of creatine kinase isoenzyme in myofibrils. II. Chicken heart muscle, J. Cell Biol. 75: 318.

    Article  Google Scholar 

  • Wallimann, T., Pelloni, G., Turner, D. C., and Eppenberger, H. M., 1978c, Monovalent antibodies against MM-creatine kinase remove the M-line from myofibrils, Proc. Natl. Acad. Sci. U.S.A. 75: 4296.

    Article  Google Scholar 

  • Weiss, P. A., 1972a, Neuronal dynamics and axonal flow. V. The semisolid state of the moving axonal column, Proc. Natl. Acad. Sci. U.S.A. 69: 620.

    Article  Google Scholar 

  • Weiss, P. A., 1972b, Neuronal dynamics and axonal flow: Axonal peristalsis, Proc. Natl. Acad. Sci. U.S.A. 69: 1309.

    Article  Google Scholar 

  • Weiss, P. A., and Mayr, R., 1971, Organelles in neuroplasmic (“axonal”) flow: Neurofilaments, Proc. Natl. Acad. Sci. U.S.A. 68: 846.

    Article  Google Scholar 

  • Wesniewski, H., Shelanski, M. L., and Terry, R. D., 1968, Effect of mitotic spindle inhibitors on neurotubules and neurofilaments in anterior horn cells, J. Cell Biol. 38: 224.

    Article  Google Scholar 

  • Zackroff, R. V., and Goldman, R. D., 1979, In vitro assembly of intermediate filaments from baby hamster kidney (BHK-21) cells, Proc. Natl. Acad. Sci. U.S.A. 76: 6226.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Fuseler, J.W., Shay, J.W., Feit, H. (1981). The Role of Intermediate (10-nm) Filaments in the Development and Integration of the Myofibrillar Contractile Apparatus in the Embryonic Mammalian Heart. In: Dowben, R.M., Shay, J.W. (eds) Cell and Muscle Motility. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8196-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8196-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8198-3

  • Online ISBN: 978-1-4684-8196-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics