Skip to main content

Nuclear Quadrupole Resonance Spectroscopy and Its Application to Chemistry

  • Chapter
Spectrometry of Fuels

Abstract

For a sample to absorb radiofrequency power due to nuclear quadrupole resonance, the following basic criteria must be satisfied:

  1. 1.

    The sample must contain nuclei with an electric quadrupole moment.

  2. 2.

    These quadrupolar nuclei must be situated in an electric field gradient—usually the result of neighboring atoms in a molecule.

  3. 3.

    The sample must be in the solid state—liquids or gases must be frozen.

  4. 4.

    For a signal to be observed in practice, the sample must be at least partly crystalline.

The author would like to thank Mr. D. Thompson for many illuminating discussions of NQR instrumentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. G. Dehmelt and H. Kruger, Naturwiss. 37, 111 (1950).

    Article  CAS  Google Scholar 

  2. Volke Heine, “Group Theory in Quantum Mechanics,” Pergamon Press, London (1964), p. 192.

    Google Scholar 

  3. T. P. Das and E. L. Hahn, “Solid State Physics,” Supplement 1, “Nuclear Quadrupole Resonance Spectroscopy,” Academic Press, New York (1958).

    Google Scholar 

  4. G. K. Semin and E. I. Fedin, “Use of Nuclear Quadrupole Resonance in Chemical Crystallography.” Included in “Mossbauer Effect and Its Applications in Chemistry” by V. I. Goldanskii, Consultants Bureau, New York (1964).

    Google Scholar 

  5. C. T. O’Konski, in: “Determination of Organic Structures,” ( F. C. Nachod and W. D. Phillips, eds.), Academic Press, New York (1962), Chapter 11.

    Google Scholar 

  6. L. Guibé, Ann. Phys. 7, 177 (1962).

    Google Scholar 

  7. W. J. Orville-Thomas, Quart. Rev. 11, 162 (1957).

    Article  CAS  Google Scholar 

  8. E. A. C. Lucken, “Nuclear Quadrupole Coupling Constants,” Academic Press, New York (1969).

    Google Scholar 

  9. Y. Ting, E. Manring, and D. Williams, Phys. Rev. 96, 408 (1954).

    Article  CAS  Google Scholar 

  10. G. K. Semin, Dokl. Akad. Nauk SSSR 158 (5), 1169 (1964).

    CAS  Google Scholar 

  11. T. A. Babushkina, V. I. Robas, and G. K. Semin, Dokl. Akad. Nauk SSSR 159, 164 (1964).

    CAS  Google Scholar 

  12. G. E. Peterson and P. M. Bridenbaugh, Rev. Sci. Instr. 35, 698 (1964).

    Article  Google Scholar 

  13. C. Dean and M. Pollak, Rev. Sci. Instr. 31, 204 (1960).

    Article  Google Scholar 

  14. J. A. S. Smith and D. A. Tong, J. Sci. Instr., Series 21, 8 (1968).

    Google Scholar 

  15. G. E. Peterson and P. M. Bridenbaugh, Rev. Sci. Instr. 37, 1081 (1966).

    Article  CAS  Google Scholar 

  16. G. D. Watkins and R. V. Pound, Phys. Rev. 85, 1062 (1952).

    Article  CAS  Google Scholar 

  17. G. D. Watkins and R. V. Pound, Prog. Nucl. Phys. 2, 21 (1952).

    Google Scholar 

  18. F. N. H. Robinson, J. Sci. Instr. 36, 481 (1959).

    Article  CAS  Google Scholar 

  19. C. H. Townes and B. P. Dailey, J. Chem. Phys. 17, 782 (1949).

    Article  CAS  Google Scholar 

  20. E. G. Brame, Jr., Anal. Chem. 39, 918 (1967).

    Article  CAS  Google Scholar 

  21. R. M. Smith and R. West, to be published.

    Google Scholar 

  22. A. Roedig, R. Helm, R. West, and R. M. Smith, Tetrahedron Letters, in press.

    Google Scholar 

  23. R. M. Smith and R. West, Tetrahedron Letters, in press.

    Google Scholar 

  24. W. L. Truett and D. K. Wilks, “NQR Bibliography,” Wilks Scientific Corp., South Norwalk, Connecticut (1967).

    Google Scholar 

  25. H. Meal, J. Am. Chem. Soc. 74, 6121 (1952).

    Article  CAS  Google Scholar 

  26. P. Biryokov and M. G. Voronkov, Coll. Czech Chem. Commun. 32, 830 (1967).

    Google Scholar 

  27. P. J. Bray and R. G. Barnes, J. Chem. Phys. 27, 551 (1957).

    Article  CAS  Google Scholar 

  28. D. Beidenkapp and A. Weiss, J. Chem. Phys. 49, 3933 (1968).

    Article  Google Scholar 

  29. H. D. Schultz and C. Karr, Jr., Anal. Chem. 41, 661 (1969).

    Article  CAS  Google Scholar 

  30. S. Kojima, S. Ogawa, M. Minematsu, and M. Tanaka, J. Phys. Soc. Japan 13, 446 (1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Plenum Press, New York

About this chapter

Cite this chapter

Gilby, A.C. (1970). Nuclear Quadrupole Resonance Spectroscopy and Its Application to Chemistry. In: Friedel, R.A. (eds) Spectrometry of Fuels. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8121-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8121-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8123-5

  • Online ISBN: 978-1-4684-8121-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics