Skip to main content

Sintering

  • Chapter

Abstract

In modern technical terminology the term sintering is used to describe the phenomena which occur when useful solid products are made from inorganic powders—either metallic or nonmetallic. The process is relatively easily accomplished. An array of particles of suitable size (commonly a few microns or less in diameter) is heated to a temperature between 1/2 and 3/4 of the absolute melting point for times of the order of 1 hr. During this treatment the particles join together, the piece shrinks, and much of the void volume which resulted from the initial misfit of the powder particles is eliminated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. C. Kuczynski, Self-diffusion in sintering of metallic particles, Trans. Am. Inst. Min. Met. Eng. 185, 169–178 (1949).

    Google Scholar 

  2. G. C. Kuczynski, Measurement of self-diffusion of silver without radioactive tracers, J. Appl. Phys. 21, 632–635 (1950).

    Article  CAS  Google Scholar 

  3. S. Prochazka, Investigation of ceramics for high temperature turbine vanes, SRD-72–035, Final report under contract N00019–71-C-0290 for Department of the Navy, Naval Air Systems Command, Washington, D.C.

    Google Scholar 

  4. C. Greskovich and K. Lay, Grain growth in very porous A12O3 compacts, J. Am. Ceram. Soc. 55, 142–146 (1972).

    Article  CAS  Google Scholar 

  5. J. E. Burke, Some factors affecting the rate of grain growth in metals, Trans. Am. Inst. Min. Met. Eng. 180, 73 (1949).

    Google Scholar 

  6. W. D. Kingery and B. Francois, in Sintering and Related Phenomena (G. C. Kuczynski, N. A. Hooton, and C. F. Gibbon, eds.), pp. 471–498, Gordon and Breach, New York (1967).

    Google Scholar 

  7. F. A. Nichols, Kinetics of diffusional motion or pores in solids, J. Nucl. Mat. 30, 143–165 (1969).

    Article  CAS  Google Scholar 

  8. J. Cahn, The impurity drag effect in grain boundary motion, Acta Met. 10, 789–798 (1962).

    Article  CAS  Google Scholar 

  9. K. Aust and J. W. Rutter, in Recovery and Re crystallization of Metals (L. Himmel, ed.), pp. 131–169, Wiley, New York (1963).

    Google Scholar 

  10. W. D. Kingery, in Ceramic Fabrication Processes (W. D. Kingery, ed.), pp. 131–143, Technology Press and Wiley, New York (1958).

    Google Scholar 

  11. T. Vasilos and R. M. Spriggs, in Progress in Ceramic Science (J. E. Burke, ed.), Vol. 4, pp. 95–132 (1966).

    Google Scholar 

  12. C. Herring, Diffusional viscosity of a polycrystalline solid, J. Appl. Phys. 21, 437–445 (1950).

    Article  Google Scholar 

  13. W. D. Kingery and M. Berg, Study of the initial stages of sintering solids by viscous flow, evaporation-condensation, and self-diffusion, J. Appl. Phys. 26, 1205–1212 (1955).

    Article  CAS  Google Scholar 

  14. F. Thummler and W. Thomma, The sintering process, Metals and Materials 1, 69–108 (1967).

    Google Scholar 

  15. D. L. Johnson and I. B. Cutler, Diffusion sintering: I, Initial stage sintering models and their application to shrinkage of powder compacts. II, Initial sintering kinetics of alumina, J. Am. Ceram. Soc. 46, 541–550 (1963).

    Article  CAS  Google Scholar 

  16. D. L. Johnson, New method of obtaining volume, grain boundary, and surface diffusion coefficients from sintering data, J. Appl. Phys. 40, 192–200 (1969).

    Article  CAS  Google Scholar 

  17. R. L. Coble, Sintering crystalline solids. I. Intermediate and final stage diffusion models, J. Appl. Phys. 32, 787–792 (1961).

    Article  CAS  Google Scholar 

  18. R. L. Coble and T. K. Gupta, in Sintering and Related Phenomena (G. C. Kuczynski, N. A. Hooton, and C. F. Gibbon, eds.), pp. 423–444, Gordon and Breach, New York (1967).

    Google Scholar 

  19. D. L. Johnson, A general model for the intermediate stage of sintering, J. Am. Ceram. Soc. 53, 574–577 (1970).

    Article  CAS  Google Scholar 

  20. J. H. Rosolowski and C. Greskovich, Theory of the dependence of densification on grain growth during intermediate-stage sintering, J. Am. Ceram. Soc. 58, 177–182 (1975).

    Article  CAS  Google Scholar 

  21. J. H. Rosolowski and C. Greskovich, Analysis of pore shrinkage by volume diffusion during final stage sintering, J. Appl. Phys. 44, 1441–1450 (1973).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Bell Telephone Laboratories, Incorporated

About this chapter

Cite this chapter

Burke, J.E., Rosolowski, J.H. (1976). Sintering. In: Hannay, N.B. (eds) Treatise on Solid State Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8082-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8082-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8084-9

  • Online ISBN: 978-1-4684-8082-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics