Skip to main content

Applications of Parallel-Plate Avalance Counters in Mössbauer Spectroscopy

  • Chapter
Mössbauer Effect Methodology

Abstract

Transmission techniques are the dominating detection techniques in Mössbauer spectroscopy. As illustrated in Fig.1 the usual set-up consists of a (moving) source emitting Mössbauer γ-radiation which is partially absorbed in a resonance absorber; the transmitted radiation is detected in a suitable γ-detector as a function of a relative velocity between source and absorber. A typical transmission-spectrum shows a resonance absorption effect of a few percent. In general this percentage cannot be increased due to Debye-Waller factors f < 1 for source and absorber and due to the necessity of thin absorbers to avoid undesired line broadening. Moreover, the effect may be decreased by additionally detected background radiation. The alternative method to measure resonantly scattered γ-radiation (γ′) or X-rays or conversion electrons emitted after resonance absorption has been applied for special problems only. Here, the background of non-resonantly scattered radiation can be kept low so that large (>1) effect-to-background ratios are obtainable for many cases. This advantage, however, is restricted by a loss in intensity due to a comparably small solid angle for the detection of the scattered radiation in conventional experimental arrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Debrunner, Mössbauer Effect Methodology (ed.I.J. Gruvermann) 1, 97 (1965)

    Google Scholar 

  2. K.P. Mitrofanov and V.S. Shpinel JETP 13, 686 (1961)

    Google Scholar 

  3. Zw. Bonchev, A. Jordanov and A. Minkova, Nucl. Instr. Meth. 70, 36 (1969)

    Article  CAS  Google Scholar 

  4. U. Bäverstam, C. Bohm, T. Ekdahl, D. Liljequist and B. Ringström, Mössbauer Effect Methodology (ed.I.J. Gruver-mann and C.W. Seidel and D.K. Dieterly) 9, 259 (1974)

    Google Scholar 

  5. K.P. Mitrofanov, N.V. Illarionova, and V.S. Shpinel Instr. Exp. Tech. 3, 415 (1963)

    Google Scholar 

  6. C.M. Yagnik, R.A. Mazak, and R.L. Collins Nucl. Instr. Meth. 114, 1 (1974)

    Article  CAS  Google Scholar 

  7. J.J. Spijkerman,Mössbauer Effect Methodology (ed. I.J. Gruvermann) 7, 85 (1971)

    Google Scholar 

  8. J. Christiansen, Z. angew. Phys. 4, 326 (1952)

    Google Scholar 

  9. J.E. Draper, Nucl. Instr. Meth. 30, 148 (1964)

    Google Scholar 

  10. A. Krusche, D. Bloess and F. Münnich, Nucl. Instr. Meth. 51, 197 (1967)

    Article  CAS  Google Scholar 

  11. G.T. Trammel, J.P. Hannon, Phys. Rev. 180, 337 (1969)

    Article  Google Scholar 

  12. Yu. M. Kagan, A.M. Afanasev, V.K. Voitovetskii JETP Letters 9, 91 (1969)

    Google Scholar 

  13. P. Steiner and G. Weyer, Z. Phys. 248, 362 (1971)

    Article  CAS  Google Scholar 

  14. A.M. Afanasev and Yu. Kagan, Phys. Lett. 31A, 38 (1970)

    Article  CAS  Google Scholar 

  15. K.P. Mitrofanov, M.V. Plotnikova, N.I. Rokhlov and V.S. Shpinel, JETP Lett. 12, 60 (1970)

    Google Scholar 

  16. P. Steiner and G. Weyer, Phys. Lett. 36A, 201 (1971)

    Article  CAS  Google Scholar 

  17. G. Weyer, J.U. Andersen, B.I. Deutch, J.A. Golovchenko and A. Nylandsted-Larsen, Rad. Eff. 24, 117 (1975)

    Article  CAS  Google Scholar 

  18. P. Steiner and G. Weyer, unpublished

    Google Scholar 

  19. J. Christiansen, P. Hindennach, U. Morfeld, E. Recknagel, D. Riegel and G. Weyer, Nucl. Phys. A99, 345 (1967)

    Article  CAS  Google Scholar 

  20. H. Drost, H.v. Lojewski, K. Palow, R. Wallenstein and G. Weyer, Proc. of the 5th Int. Conf. on Mössb. Spectr., Bratislava 1973, Ed. U. Hucl and T. Zemcik, page 713 (1975)

    Google Scholar 

  21. H. Drost,K. Palow and G. Weyer, Proc. of the Int. Conf. on the Appl. of the Mössb. Eff., Bendor 1974, Journ. de Phys. (Paris) 12, C 6–679 (1974)

    Google Scholar 

  22. P.J. West, E. Matthias, D. Salomon, W. Wallner and G. Weyer, Proc. of the Int. Conf. on Mössb. Spectr.Cracow 1975, Ed. A.Z. Hrynkiewicz and J.A. Sawicki, p. 457 (1975)

    Google Scholar 

  23. D. Salomon, P.J. West, G. Weyer and E. Matthias Mössbauer conversion electron studies on tantalum metal surfaces, to be published

    Google Scholar 

  24. S.L. Ruby, Proc. of the Int. Conf. on the Appl. of the Mössb. Eff., Bendor 1974, Journ. de Phys. (Paris) 12, C 6–209 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weyer, G. (1976). Applications of Parallel-Plate Avalance Counters in Mössbauer Spectroscopy. In: Gruverman, I.J., Seidel, C.W. (eds) Mössbauer Effect Methodology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8073-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8073-3_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8075-7

  • Online ISBN: 978-1-4684-8073-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics