Skip to main content

Toward the Genetic Engineering of Disease Resistance in Plants: The Transfer of Pea Genes to Potatoes

  • Chapter
Molecular Approaches to Improving Food Quality and Safety
  • 109 Accesses

Abstract

The heightening concern of consumers about the pesticide residues of food has resulted in the loss of or requirement for reregistration of some of the mainstay pesticides used in agriculture (Richardson 1989). As this process continues, the need for employing any and all natural processes that can contribute to plant protection becomes paramount. The abundance and low cost of foods to date has contributed to the low level of funding for plant research. The plant scientist is now facing an urgent demand for natural plant protection without an extensive backlog of supportive basic research. That is, we are expected to replace the rare, effective chemicals derived from millions of synthetically generated compounds with natural compounds (Bell 1981; Bailey and Mansfield 1982) that are painstakingly derived from natural defense responses in plants. Further, these compounds must also be effective when applied externally, be scrutinized for safety concerns, be reasonable in price, and be applicable to the existing agricultural practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • An, G., B. D. Watson, S. Stachel, M. P. Gordon, and E. W. Nester 1985. New cloning vehicles for transformation of higher plants. EMBO J. 42:277–284.

    Article  Google Scholar 

  • Bailey, J. A., and J. W. Mansfield. 1982. Phytoalexins. NY: Wiley.

    Google Scholar 

  • Bell, A. A. 1981. Biochemical mechanisms of disease resistance. Ann. Rev. Plant Physiol. 32:21–81.

    Article  CAS  Google Scholar 

  • Bowles, D. J. 1990. Defense related proteins in higher plants. Ann. Rev. Biochem. 59:873–907.

    Article  CAS  PubMed  Google Scholar 

  • Chiang, C. C., and L. A. Hadwiger. 1990. Cloning and characterization of a disease resistance response gene in pea induced by Fusarium solani. Mol. Plant MicrobeInteractions 3:75–87.

    Google Scholar 

  • Daniels, C. H., B. W. Fristensky, W. Wagoner, and L. A. Hadwiger. 1986. Pea genes associated with non-host disease resistance to Fusarium are also active in race-specific disease resistance to Pseudomonas. Plant Mol. Biol. 8:309–316.

    Article  Google Scholar 

  • Dixon, R. A., and C. J. Lamb. 1990. Molecular communications in interactions between plants and microbial pathogens. Ann. Rev. Plant Physiol. 41:339–367.

    Article  CAS  Google Scholar 

  • Fernandez, M. R., and M. C. Heath. 1989. Interaction of the non-host French bean plant (Phaseolus vulgaris) with parasitic and saprophytic fungi. I. Fungal development on and in killed, untreated, heat-treated, or Blasticidin S treated leaves. Can. J. Bot. 67:661–669.

    Article  Google Scholar 

  • Flor, H. H. 1971. Present status of the gene for gene concept. Ann. Rev. Phytopathol. 9:275–296.

    Article  Google Scholar 

  • Fristensky, B., D. Horovitz, and L. A. Hadwiger. 1988. cDNA sequences for pea disease resistance response genes. Plant Mol. Biol. 11:713–715.

    Article  CAS  PubMed  Google Scholar 

  • Fristensky, B., R. C. Riggleman, W. Wagoner, and L. A. Hadwiger. 1985. Gene expression in susceptible and disease resistant interactions of peas induced with Fusarium solani pathogens and chitosan. Physiol. Plant Pathol. 27:15–28.

    Article  CAS  Google Scholar 

  • Hadwiger, L. A. 1988. Possible role of nuclear structure in disease resistance in plants. Phytopathology 78:1009–1014.

    Google Scholar 

  • Hadwiger, L. A., and J. M. Beckman. 1980. Chitosan as a component of pea-Fusarium solani interactions. Plant Physiol. 66:205–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadwiger, L. A., and W. Wagoner. 1983a. Effect of heat shock on the mRNA-directed disease resistance response of peas. Plant Physiol. 72:553–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadwiger, L. A., and W. Wagoner. 1983b. Electrophoretic patterns of pea and Fusarium solani proteins synthesized in vitro which characterize the compatible and incompatible interactions. Physiol. Plant Pathol. 23:153–162.

    Article  CAS  Google Scholar 

  • Hadwiger, L. A., C. C. Chiang, and D. Horovitz. 1991. Expression of disease resistance response genes in near isogenic pea cultivars following challenge by Fusarium solani race 1. Physiol. Molec. Plant Pathol. (in press).

    Google Scholar 

  • Heath, M. C. 1987. Host vs. non-host resistance. In Molecular Strategies for Crop Protection, ed. C. J. Arntzen and C. Ryan, pp. 25–34. New York: Liss.

    Google Scholar 

  • Keen, N. T. 1990. Gene-for-gene complimentarity in plant-pathogen interactions. Ann. Rev. Genet. 24:447–463.

    Article  CAS  PubMed  Google Scholar 

  • Kendra, D. F., and L. A. Hadwiger. 1984. Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum. Exp. Mycol. 8:276–281.

    Article  CAS  Google Scholar 

  • Kendra, D. F., D. A. Christian, and L. A. Hadwiger. 1989. Chitosan oligomers from Fusarium solani/pea interactions, chitinase/β-glucanase digestion and fungal wall chitin actively inhibit fungal growth and induce disease resistance. Physiol. Mol. Plant Pathol. 35:215–230.

    Article  CAS  Google Scholar 

  • Klee, H., R. Horsch, and S. Rogers. 1987. Agrobacterium-medicated plant transformation and its further applications to plant biology. Ann. Rev. Plant Physiol. 38:467–486.

    Article  CAS  Google Scholar 

  • Kuc, J., and C. Preisig. 1984. Fungal regulation of disease resistance mechanisms in plants. Mycologia 76:767–784.

    Article  CAS  Google Scholar 

  • LeGuay, J. J., M. Piecoup, J. Puckett, and J. P. Jouanneau. 1988. Common responses of cultured soybean cells to 2,4-D starvation and fungal elicitor treatment. Plant Cell Rep. 7:19–22.

    Article  CAS  PubMed  Google Scholar 

  • Lindgren, P. B., N. J. Panopoulos, B. J. Staskawicz, and D. Dahlbeck. 1988. Genes required for pathogenicity and hypersensitivity are conserved and interchangeable among pathovars of Pseudomonas syringae. Mol. Gen. Genet. 211:499–506.

    Article  CAS  Google Scholar 

  • Matton, D. P., and N. Brisson. 1989. Cloning, expression, and sequence conservation of pathogenesis-related gene transcripts of potato. Mol. Plant Microbe Interactions 2:325–331.

    Article  CAS  Google Scholar 

  • Mauch, F., L. A. Hadwiger, and T. Boiler. 1984. Ethylene: Symptom, not signal for the induction of chitinase and β-1,3-glucanase in pea pods by pathogens and elicitors. Plant Physiol. 76:607–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauch, F. C., L. A. Hadwiger, and T. Boller. 1988. Purification and characterization of two β-1,3-glucanase differentially regulated during development and in response to fungal infection. Plant Physiol. 87:325–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newport, J. W., and D. J. Forbes. 1987. The nucleus: Structure, function and dynamics. Ann. Rev. Biochem. 56:535–566.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, L. 1989. Registration reality. Agriculture Age 33:13–15.

    Google Scholar 

  • Riggleman, R. C., B. Fristensky, and L. A. Hadwiger. 1985. The disease resistance response in pea is associated with increased levels of specific mRNAs. Plant Mol. Biol. 48:81–86.

    Article  Google Scholar 

  • Schmidt, R. J., F. A. Burr, M. J. Aukerman, and B. Burr. 1990. Maize regulatory gene opaque-2 encodes a protein with a leucine-zipper motif that binds to zein DNA. Proc. Natl. Acad. Sci. (USA) 87:46:50.

    Google Scholar 

  • Silver, P. A. 1991. How proteins enter the nucleus. Cell 64:489–497.

    Article  CAS  PubMed  Google Scholar 

  • Singh, K., E. S. Dennis, J. G. Ellis, D. J. Llewellyn, J. G. Tokuhisa, J. A. Wahleithner, and W. J. Peacock. 1990. OCSBF-1 a maize Ocs enhancer binding factor: Isolation an expression during development. Plant Cell 2:891–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teasdale, J., D. Daniels, W. C. Davis, R. Eddy Jr., and L. A. Hadwiger. 1974. Physiological and cytological similarities between disease resistance and cellular incompatibility responses. Plant Physiol. 54:690–695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagoner, W., D. C. Loschke, and L. A. Hadwiger. 1982. Two-dimensional electrophoresis analysis of in vivo and in vitro synthesis of proteins in peas inoculated with compatible and incompatible Fusarium solani. Physiol. Plant Pathol. 20:99–107.

    Article  CAS  Google Scholar 

  • Wessler, S., and S. Hake. 1990. Maize harvest. Plant Cell 2:495–499.

    Article  PubMed Central  Google Scholar 

  • Yarwood, C. E. 1973. Some principles of plant pathology, II. Phytopathology 63:1324–1325.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Van Nostrand Reinhold

About this chapter

Cite this chapter

Hadwiger, L.A. (1992). Toward the Genetic Engineering of Disease Resistance in Plants: The Transfer of Pea Genes to Potatoes. In: Bhatnagar, D., Cleveland, T.E. (eds) Molecular Approaches to Improving Food Quality and Safety. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-8070-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8070-2_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-8072-6

  • Online ISBN: 978-1-4684-8070-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics