Skip to main content

Specific Inhibitors as Probes into the Biosynthesis And Metabolism of Aromatic Amino Acids

  • Chapter
The Shikimic Acid Pathway

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 20))

Abstract

Inhibitors of enzymic and metabolic processes are invaluable tools in biochemical and physiological research, and their application as drugs or pesticides ranges from medicine to agriculture. The information one can extract from their judicious use depends, on the one hand, on the complexity of the system to which they are applied and, on the other hand, on their selectivity for a given target, as well as on their access to this target. Accessibility in this context is meant to include the arrival of the inhibitor at its target site in a state in which it is capable of exerting its inhibitory action. It is obvious that the chances for selectivity of a given inhibitor decrease with the increasing complexity of a system as measured, for example, by the number of enzymic reactions involved and the degree of their interaction and interdependence in the metabolic network of a cell. To illustrate this point, α-aminooxy acetic acid (AOA) is a fairly potent inhibitor of the biosynthesis of phenylpropanoid compounds and has been used in complementation experiments to study the biosynthesis of cyanidin in buckwheat.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AMRHEIN, N. 1979. Biosynthesis of cyanidin in buckwheat hypocotyls. Phytochemistry 18: 585–589.

    Article  CAS  Google Scholar 

  2. JOHN, R.A., A. CHARTERS, L.J. FOWLER. 1978. The reaction of amino-oxyacetate with pyridoxal phosphate-dependent enzymes. Biochem. J. 171: 771–779.

    CAS  Google Scholar 

  3. AMRHEIN, N., D. WENKER. 1979. Novel inhibitors of ethylene production in higher plants. Plant Cell Physiol. 20: 1635–1642.

    CAS  Google Scholar 

  4. FUJINO, D.W., M.S. REID, S.F. YANG. 1980. Effects of amino-oxyacetic acid on postharvest characteristics of carnation. Acta Hortic. 113: 59–64.

    Google Scholar 

  5. FEDTKE, C. 1982. Biochemistry and physiology of herbicide action. Springer, Berlin — Heidelberg -New York, 202 pp.

    Book  Google Scholar 

  6. JAWORSKI, E.G. 1972. The mode of action of N-phosphonomethylglycine. Inhibition of aromatic amino acid biosynthesis. J. Agric. Food Chem. 20: 1195–1198.

    Article  CAS  Google Scholar 

  7. AMRHEIN, N., K.-H. GÖDEKE. 1977. α-Aminooxy-β-phenylpropionic acid, a potent inhibitor of L-phenylalanine ammonia-lyase in vitro and in vivo. Plant Sci. Lett. 8: 313–317.

    Article  CAS  Google Scholar 

  8. CORBETT, J.R., K. WRIGHT, A.C. BAILLIE. 1984. The biochemical mode of action of pesticides. 2nd Edition, Academic Press, London, 382 pp.

    Google Scholar 

  9. HASLAM, E. 1974. The shikimate pathway. Butterworths, London, 316 pp.

    Google Scholar 

  10. WEISS, U., J.M. EDWARDS. 1980. The biosynthesis of aromatic compounds. John Wiley and Sons, New York, 728 pp.

    Google Scholar 

  11. HERRMANN, K.M. 1983. The common aromatic biosynthetic pathway, In Amino Acids: Biosynthesis and Genetic Regulation. (K.M. Herrmann, R.L. Somerville, eds.), Addison-Wesley, Reading, Massachusetts, pp. 301–322.

    Google Scholar 

  12. LE MARéCHAL, P., C. FROUSSIOS, M. LEVEL, R. AZERAD. 1980. Enzyme properties of phosphonic analogues of D-erythrose 4-phosphate. Biochem. Biophys. Res. Commun. 92: 1097–1103.

    Article  Google Scholar 

  13. ROISCH, U., F. LINGENS. 1974. Wirkung des Herbizids N-(Phosphonomethyl)glycin auf die Biosynthese der aromatischen Aminosäuren. Angew. Chem. 13: 400.

    CAS  Google Scholar 

  14. ROISCH, U., F. LINGENS. 1980. Zur Wirkungsweise des Herbizids N-(Phosphonomethyl)Glycin. Einfluß von N-(Phosphonomethyl)Glycin auf das Wachstum und auf die Enzyme der Aromatenbiosynthese von Escherichia coli. Hoppe-Seyler’s Z. Physiol. Chem. 361: 1049–1058.

    CAS  Google Scholar 

  15. RUBIN, J.L., C.G. GAINES, R.A. JENSEN. 1982. Enzymological basis for herbicidal action of glyphosate. Plant Physiol. 70: 833–839.

    Article  CAS  Google Scholar 

  16. BODE, R., C. MELO RAMOS, D. BIRNBAUM. 1984. Inhibition of tyrosine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase by glyphosate in Candida maltosa. FEMS Microbiol. Lett. 23: 7–10.

    CAS  Google Scholar 

  17. ENGEL, R. 1977. Phosphonates as analogues of natural phosphates. Chem. Rev. 77: 349–367.

    Article  CAS  Google Scholar 

  18. LE MARéCHAL, P., C. FROUSSIOS, N. LEVEL, R. AZERAD. 1980. The interaction of phosphonate and homophos-phonate analogues of 3-deoxy-D-arabino heptulosonate 7-phosphate with 3-dehydroquinate synthetase from Escherichia coli.

    Google Scholar 

  19. PILCH, P.F., R.L. SOMERVILLE. 1976. Fluorine-containing analogues of intermediates in the shikimate pathway. Biochemistry 15: 5315–5320.

    Article  CAS  Google Scholar 

  20. BAILLIE, A.C., J.R. CORBETT, J.R. DOWSETT, P. MCCLOSKEY. 1972. Inhibitors of shikimate dehydrogenase as potential herbicides. Pestic. Sci. 3: 113–120.

    CAS  Google Scholar 

  21. BAIRD, D.D., R.P. UPCHURCH, W.B. HOMESLEY, J.E. FRANZ. 1971. Introduction of a new broad spectrum post emergence herbicide class with utility for herbaceous perennial weed control. Proc. North Centr. Weed Control Conf. 26: 64–68.

    CAS  Google Scholar 

  22. FRANZ, J.E. 1979. Glyphosate and related chemistry. In Advances in Pesticide Science, Part 2. (H. Geissbühler, ed.), Pergamon Press, Oxford and New York, pp. 139–147.

    Google Scholar 

  23. HOAGLAND, R.E., S.O. DUKE. 1982. Biochemical effects of glyphosate [N-(phosphonomethyl)glycine]. In Biochemical responses induced by herbicides. (D.E. Moreland, J.B. St. John, F.D. Hess, eds.), ACS Symposium Series 181: 175–205.

    Chapter  Google Scholar 

  24. GOUGLER, J.A., D.R. GEIGER. 1981. Uptake and distribution of N-(phosphonomethyl)glycine in sugar beet plants. Plant Physiol. 68: 668–672.

    Article  CAS  Google Scholar 

  25. SPRANKLE, P., W.F. MEGGITT, D. PENNER. 1975. Absorption, action, and translocation of glyphosate. Weed Sci. 23: 235–240.

    CAS  Google Scholar 

  26. HADERLIE, L.C., F.W. SLIFE, H.S. BUTLER. 1978. 14C-glyphosate absorption and translocation in germinating maize (Zea mays) and soybean (Glycine max) seeds and in soybean plants. Weed Res. 18: 269–273.

    Article  CAS  Google Scholar 

  27. ASHTON, F.M., A.S. CRAFTS. 1981. Mode of Action of Herbicides. 2nd Edition, John Wiley and Sons, New York, pp. 236–253.

    Google Scholar 

  28. KABACHNIK, M.I., T.Y. MEDVED, N.M. DYATLOVA, M.V. RUDOMINO. 1974. Organophosphorus complexones. Russ. Chem. Rev. (Engl. Transl.) 43: 733–744.

    Article  Google Scholar 

  29. GLASS, R.L. 1984. Metal complex formation by glyphosate. J. Agric. Food Chem. 32: 1249–1253.

    Article  CAS  Google Scholar 

  30. HADERLIE, L.C., J. WIDHOLM, F.W. SLIFE. 1977. Effect of glyphosate on carrot and tobacco cells. Plant Physiol. 60: 40–43.

    Article  CAS  Google Scholar 

  31. GRESSHOFF, P. 1979. Growth inhibition of glyphosate and reversal of its action by phenylalanine and tyrosine. Aust. J. Plant Physiol. 6: 177–185.

    Article  CAS  Google Scholar 

  32. HOLLäNDER, H., N. AMRHEIN. 1980. The site of the inhibition of the shikimate pathway by glyphosate. I. Inhibition by glyphosate of phenylpropanoid synthesis in buckwheat (Fagopyrum esculentum Moench). Plant Physiol. 66: 823–829.

    Article  Google Scholar 

  33. SCHERF, H., M.H. ZENK. 1967. Der Einfluβ des Lichtes auf die Flavonoidsynthese und die Enzyminduktion bei Fagopyrum esculentum Moench. Z. Pflanzenphy-siol. 57: 401–418.

    CAS  Google Scholar 

  34. AMRHEIN, N., B. DEUS, P. GEHRKE, H.C. STEINRÜCKEN. 1980. The site of the inhibition of the shikimate pathway by glyphosate. II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiol. 66: 830–834.

    Article  CAS  Google Scholar 

  35. AMRHEIN, N., B. DEUS, P. GEHRKE, H. HOLLÄNDER, J. SCHAB, A. SCHULZ, H.C. STEINRÜCKEN. 1981. Interference of glyphosate with the shikimate pathway. Proc. Plant Growth Regul. Soc. Am. 8: 99–106.

    Google Scholar 

  36. AMRHEIN, N., J. SCHAB, H.C. STEINRÜCKEN. 1981. The mode of action of the herbicide glyphosate. Naturwissenschaften 67: 356–357.

    Article  Google Scholar 

  37. BERLIN, J., L. WITTE. 1980. Effect of glyphosate on shikimic acid accumulation in tobacco cell cultures with low and high yields of cinnamoyl putrescines. Z. Naturforsch. 36c: 210–214.

    Google Scholar 

  38. ISHIKURA, N., Y. TAKESHIMA. 1984. Effects of glyphosate on caffeic acid metabolism in Perilla cell suspension cultures. Plant Cell Physiol. 25: 185–189.

    CAS  Google Scholar 

  39. DUKE, S.O., R.E. HOAGLAND, C.D. ELMORE. 1979. Effects of glyphosate on metabolism of phenolic compounds. IV. Phenylalanine ammonia-lyase activity, free amino acids, and soluble hydroxyphenolic compounds in axes of light-grown soybeans. Physiol. Plant 46: 307–317.

    Article  CAS  Google Scholar 

  40. AMRHEIN, N., H. TOPP, O. JOOP. 1984. The pathway of gallic acid biosynthesis in higher plants. Plant Physiol. 75: S96.

    Google Scholar 

  41. SAIJO, R. 1983. Pathway of gallic acid biosynthesis and its esterification with catechins in young tea shoots. Agric. Biol. Chem. 47: 455–460.

    Article  CAS  Google Scholar 

  42. AMRHEIN, N., H. HOLLÄNDER. 1981. Light promotes the production of shikimic acid in buckwheat. Naturwissenschaften 68: 43.

    Article  CAS  Google Scholar 

  43. SUZICH, J.A., R. RANJEVA, P.M. HASEGAWA, K.M. HERRMANN. 1984. Regulation of the shikimate pathway of carrot cells in suspension culture. Plant Physiol. 75: 369–371.

    Article  CAS  Google Scholar 

  44. BOWEN, J.R., T. KOSUGE. 1977. The formation of shikimate-3-phosphate in cell-free preparations of Sorghum. Phytochemistry 16: 881–884.

    Article  CAS  Google Scholar 

  45. BOWEN, J.R., T. KOSUGE. 1979. In vivo activity, purification, and characterization of shikimate kinase from Sorghum. Plant Physiol. 64: 382–386.

    Article  CAS  Google Scholar 

  46. KOSHIBA, T. 1979. Alicyclic acid metabolism in plants 12. Partial purification and some properties of shikimate kinase from Phaseolus mungo seedlings. Plant Cell Physiol. 20: 803–809.

    CAS  Google Scholar 

  47. KOSHIBA, T. 1979. Shikimate kinase and 5-enolpyru-vylshikimate-3-phosphate synthase in Phaseolus mungo seedlings. Z. Pflanzenphysiol. 88: 353–355.

    Google Scholar 

  48. KOSHIBA, T. 1979. Organization of enzymes in the shikimate pathway of Phaseolus mungo seedlings. Plant Cell Physiol. 20: 667–670.

    CAS  Google Scholar 

  49. STEINRÜCKEN, H.C., N. AMRHEIN. 1980. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem. Biophys. Res. Commun. 94: 1207–1212.

    Article  Google Scholar 

  50. LEWENDON, A., J.R. COGGINS. 1983. Purification of 5-enolpyruvylshikimate 3-phosphate synthase from Escherichia coli. Biochem. J. 213: 187–191.

    CAS  Google Scholar 

  51. DUNCAN, K., L. LEWENDON, J.R. COGGINS. 1984. The purification of 5-enolpyruvylshikimate 3-phosphate synthase from an overproducing strain of Escherichia coli. FEBS Lett. 165: 121–127.

    Article  CAS  Google Scholar 

  52. STEINRUCKEN, H.C. 1982. Zur Wirkung des Herbizids Glyphosat: Einfluss auf die 5-Enolpyruvoylshiki-misäure-3-phosphat Synthase aus Aerobacter aerogenes 62–1. Doctoral Dissertation. Ruhr-Universität Bochum, 153 pp.

    Google Scholar 

  53. ANTON, D.L., L. HEDSTROM, S.M. FISH, R.H. ABELES. 1983. Mechanism of enolpyruvyl shikimate 3-phosphate synthase exchange of phosphoenolpyruvate with solvent protons. Biochemistry 22: 5903–5908.

    Article  CAS  Google Scholar 

  54. STEINRÜCKEN, H.C., N. AMRHEIN. 1984. 5-Enolpyruvyl-shikimate 3-phosphate synthase of Klebsiella pneumoniae. 1. Purification and properties. Eur. J. Biochem. 143: 341–349.

    Article  Google Scholar 

  55. BOOCOCK, M.R., J.R. COGGINS. 1983. Kinetics of 5-enolpyruvylshikimate 3-phosphate synthase inhibition by glyphosate. FEBS Lett. 154: 127–133.

    Article  CAS  Google Scholar 

  56. MOUSDALE, D.M., J.R. COGGINS. 1984. Purification and properties of 5-enolpyruvylshikimate 3-phosphate synthase from seedlings of Pisum sativum L. Planta 160: 78–83.

    Article  CAS  Google Scholar 

  57. AMRHEIN, N., H. HOLLÄNDER-CZYTKO, J. LEIFELD, A. SCHULZ, H.C. STEINRUCKEN, H. TOPP. 1982. Inhibition of the shikimate pathway by glyphosate. In Groupe Polyphenols. Journées Internationales d’Études et Assemblées Générales. (A.M. Boudet, R. Ranjeva, eds.), Bulletin d’Liaison 11: 21–30.

    Google Scholar 

  58. RUBIN, J.L., C.G. GAINES, R.A. JENSEN. 1984. Glyphosate inhibition of 5-enolpyruvylshikimate 3-phosphate synthase from suspension-cultured cells of Nicotiana silvestris. Plant Physiol. 75: 829–845.

    Article  Google Scholar 

  59. ROGERS, S.G., L.A. BRAND, S.B. HOLDER, E.S. SHARPS, M.J. BRACKIN. 1983. Amplification of the aroA gene from Escherichia coli results in tolerance to the herbicide glyphosate. Appl. Environ. Microbiol. 46: 37–43.

    CAS  Google Scholar 

  60. JAWORSKI, E.G., T.J. MOZER, S.G. ROGERS, D. TIEMIER. 1983. Herbicide target sites, mode of action, and detoxification: Chloroacetanilides and glyphosate. In Biosynthesis of the Photosynthetic Apparatus: Molecular Biology, Development and Regulation. (J.P. Thornber, L.A. Staehelin, R.G. Hallick, eds.), UCLA Symp. Mol. Cell Biol., New Ser. Vol. 14, Alan R. Liss, Inc., New York, pp. 335–349.

    Google Scholar 

  61. LUMSDEN, J., J.R. COGGINS. 1977. The subunit structure of the arom multienzyme complex of Neurospora crassa. A possible pentafunctional polypeptide chain. Biochem. J. 161: 599–607.

    CAS  Google Scholar 

  62. DUNCAN, K., A. LEWENDON, J.R. COGGINS. 1984. The complete amino acid sequence of Escherichia coli 5-enolpyruvylshikimate 3-phosphate synthase. FEBS Lett. 170: 59–63.

    Article  CAS  Google Scholar 

  63. STALKER, D.M., W.R. HIATT, L. COMAI. 1985. A single amino acid substitution in the enzyme 5-enolpyruvylshikimate 3-phosphate synthase confers resistance to the herbicide glyphosate. J. Biol. Chem. 260: 4724–4728.

    CAS  Google Scholar 

  64. CASSIDY, P.J., F.M. KAHAN. 1973. A stable enzyme-phosphoenolpyruvate intermediate in the synthesis of uridine-5-diphospho-N-acetyl-2-amino-2-deoxyglucose-3-O-enolpyruvylether. Biochemistry 12: 1363–1374.

    Article  Google Scholar 

  65. LEVIN, J.G., D.B. SPRINSON. 1964. The enzymatic formation and isolation of 3-enolpyruvylshikimate-5-phosphate. J. Biol. Chem. 239: 1142–1150.

    CAS  Google Scholar 

  66. BONDINELL, W.E., J. VNEK, P.F. KNOWLES, M. SPRECHER, D.B. SPRINSON. 1971. On the mechanism of 5-enolpyruvylshikimate 3-phosphate synthetase. J. Biol. Chem. 246: 6191–6196.

    CAS  Google Scholar 

  67. GRIMSHAW, C.E., S.G. SOGO, J.R. KNOWLES. 1982. The fate of the hydrogens of phosphoenolpyruvate in the reaction catalyzed by 5-enolpyruvylshikimate 3-phosphate synthase. J. Biol. Chem. 257: 596–598.

    CAS  Google Scholar 

  68. STEINRÜCKEN, H.C., N. AMRHEIN. 1984. 5-Enolpyruvyl-shikimate 3-phosphate synthase of Klebsiella pneumoniae. 2. Inhibition by glyphosate [N-(phos-phonomethy)glycine]. Eur. J. Biochem. 143: 351–357.

    Article  Google Scholar 

  69. BODE, R., C. MELO, D. BIRNBAUM. 1984. Mode of action of glyphosate in Candida maltosa. Arch. Microbiol. 140: 83–85.

    Article  CAS  Google Scholar 

  70. SHARPS, E.S. 1984. A radiometric assay for 5-enolpyruvylshikimate-3-phosphate synthase. Anal. Biochem. 140: 183–189.

    Article  CAS  Google Scholar 

  71. FEIERABEND, J., D. BRASSEL. 1977. Subcellular localization of shikimate dehydrogenase in higher plants. Z. Pflanzenphysiol. 82: 334–346.

    CAS  Google Scholar 

  72. BICKEL, H., L. PALME, G. SCHULTZ. 1978. Incorporation of shikimate and other precursors into aromatic amino acids and prenylquinones of isolated spinach chloroplasts. Phytochemistry 18: 498–499.

    Article  Google Scholar 

  73. ROTHE, G.M., G. HENGST, I. MILDENBERGER, H. SCHARER, D. UTESCH. 1983. Evidence for an intra- and extraplastidic prechorismate pathway. Planta 157: 358–366.

    Article  CAS  Google Scholar 

  74. D’AMATO, T.A., R.J. GANSON, C.G. GAINES, R.A. JENSEN. 1984. Subcellular localization of chorismate mutase isoenzymes in protoplasts from mesophyll and suspension-cultured cells of Nicotiana sylvestris. Planta 162: 104–108.

    Article  Google Scholar 

  75. MOUSDALE, D.M., J.R. COGGINS. 1985. Subcellular localization of the common shikimate pathway enzymes in Pisum sativum L. Planta 163: 241–249.

    Article  CAS  Google Scholar 

  76. GERHARDT, R., H.W. HELDT. 1984. Measurement of subcellular metabolite levels in leaves by fractionation of freeze-stopped material in nonaqueous media. Plant Physiol. 75: 542–547.

    Article  CAS  Google Scholar 

  77. HOLLÄNDER-CZYTKO, H., N. AMRHEIN. 1983. Subcellular compartmentation of shikimic acid and phenylalanine in buckwheat cell suspension cultures grown in the presence of shikimate pathway inhibitors. Plant Sci. Lett. 29: 89–96.

    Google Scholar 

  78. AMRHEIN, N., D. JOHÄNNING, J. SCHAB, A. SCHULZ. 1983. Biochemical basis for glyphosate tolerance in a bacterium and a plant tissue culture. FEBS Lett. 157: 191–196.

    Article  CAS  Google Scholar 

  79. AMRHEIN, N., D. JOHÄNNING, C.C. SMART. 1985. A glyphosate-tolerant plant tissue culture. In Primary and Secondary Metabolism of Plant Cell Cultures. (K.H. Neumann, ed.), Springer, Berlin-Heidelberg, New York, pp. 356–361.

    Chapter  Google Scholar 

  80. NAFZIGER, E.D., J.M. WIDHOLM, H.C. STEINRÜCKEN, J.L. KILLMER. 1984. Selection and characterization of a carrot cell line tolerant to glyphosate. Plant Physiol. 76: 571–574.

    Article  CAS  Google Scholar 

  81. STARK, G.R., F.M. WAHL. 1984. Gene amplification. Annu. Rev. Biochem. 53: 447–491.

    Article  CAS  Google Scholar 

  82. COMAI, L., L.C. SEN, D.M. STALKER. 1983. An altered aroA gene product confers resistance to the herbicide glyphosate. Science 221: 370–371.

    Article  CAS  Google Scholar 

  83. SCHULZ, A., D. SOST, N. AMRHEIN. 1984. Insensitivity of 5-enolpyruvylshikimic acid-3-phosphate synthase to glyphosate confers resistance to this herbicide in a strain of Aerobacter aerogenes. Arch. Microbiol. 137: 121–123.

    Article  CAS  Google Scholar 

  84. SOST, D., A. SCHULZ, N. AMRHEIN. 1984. Characterization of a glyphosate insensitive 5-enolpyruvyl-shikimic acid-3-phosphate synthase. FEBS Lett. 173: 238–241.

    Article  CAS  Google Scholar 

  85. SCHULZ, A., A. KRÜPER, N. AMRHEIN. 1985. Differential sensitivity of bacterial 5-enolpyruvylshikimate-3-phosphate synthases to the herbicide glyphosate. FEMS Microbiol. Lett. 28: 297–301.

    Article  CAS  Google Scholar 

  86. HARDY, R.W.F., R.T. GIAQUINTA. 1984. Molecular biology of herbicides. BioEssays 1: 152–156.

    Article  CAS  Google Scholar 

  87. NETZER, W.F. 1984. Engineering herbicide tolerance: When is it worthwhile? Biotechnology 2: 939–944.

    Article  Google Scholar 

  88. JONES, D.H. 1984. Phenylalanine ammonia-lyase: Regulation of its induction, and its role in plant development. Phytochemistry 23: 1349–1359.

    Article  CAS  Google Scholar 

  89. HANSON, K.R., E.A. HAVIR. 1981. Phenylalanine ammonia-lyase. In The Biochemistry of Plants: A Comprehensive Treatise. (E.E. Conn, ed.), Vol. 7, Academic Press, New York, pp. 577–625.

    Google Scholar 

  90. AMRHEIN, N., K.H. GÖDEKE, J. GERHARDT. 1976. The estimation of phenylalanine ammonia-lyase(PAL)-activity in intact cells of higher plant tissue. 1. Parameters of the assay. Planta 131: 33–40.

    Article  CAS  Google Scholar 

  91. AMRHEIN, N., K.H. GÖDEKE, V.I. KEFELI. 1976. The estimation of relative intracellular phenylalanine ammonia-lyase(PAL)-activities and the modulation in vivo and in vitro by competitive inhibitors. Ber. Deutsch. Bot. Ges. 89: 247–259.

    CAS  Google Scholar 

  92. AMRHEIN, N., H. HOLLÄNDER. 1979. Inhibition of anthocyanin formation in seedlings and flowers by the enantiomers of α-aminooxy-β-phenylpropionic acid and their N-benzyloxycarbonyl derivatives. Planta 144: 385–389.

    Article  CAS  Google Scholar 

  93. HOLLÄNDER, H., H.H. KILTZ, N. AMRHEIN. 1979. Interference of L-α-aminooxy-β-phenylpropionic acid with phenylalanine metabolism in buckwheat. Z. Naturforsch. 34c: 1162–1173.

    Google Scholar 

  94. HANSON, K.R. 1981. Phenylalanine ammonia-lyase: Mirror-image packing of D- and L-phenylalanine and D- and L-transition state analogs into the active site. Arch. Biochem. Biophys. 211: 575–588.

    Article  CAS  Google Scholar 

  95. HAVIR, E.A. 1981. Modification of L-phenylalanine ammonia-lyase in soybean cell suspension cultures by 2-aminooxyacetate and L-2-aminooxy-3-phenylpro-pionate. Planta 152: 124–130.

    Article  CAS  Google Scholar 

  96. JONES, H.D., D.H. NORTHCOTE. 1984. Stability of the complex formed between French bean (Phaseolus vulgaris) phenylalanine ammonia-lyase and its transition-state analog. Arch. Biochem. Biophys. 235: 167–177.

    Article  CAS  Google Scholar 

  97. AMRHEIN, N., J. GERHARDT. 1979. Superinduction of phenylalanine ammonia-lyase in gherkin hypocotyls caused by the inhibitor, L-α-aminooxy-β-phenylpro-pionic acid. Biochim. Biophys. Acta 583: 434–442.

    Article  CAS  Google Scholar 

  98. NOE, W., C. LANGEBARTELS, H.U. SEITZ. 1980. Anthocyanin accumulation and PAL activity in a suspension culture of Daucus carota L. Inhibition by L-AOPP and t-cinnamic acid. Planta 149: 283–287.

    Article  CAS  Google Scholar 

  99. NOE, W., H.U. SEITZ. 1982. Induction of mRNA activity for phenylalanine ammonia-lyase (PAL) by L-α-aminooxy-β-phenylpropionic acid, a substrate analogue of L-phenylalanine, in cell suspension cultures of Daucus carota L. FEBS Lett. 146: 52–54.

    Article  CAS  Google Scholar 

  100. SHIELDS, S.E., V.P. WINGATE, C.J. LAMB. 1982. Dual control of phenylalanine ammonia-lyase production and removal by its product cinnamic acid. Eur. J. Biochem. 123: 389–395.

    Article  CAS  Google Scholar 

  101. AMRHEIN, N., E. DIEDERICH. 1980. Turnover of isofla-vones in Cicer arietinum L. Naturwissenschaften 67: 40.

    Article  CAS  Google Scholar 

  102. JACQUES, U., J. KÖSTER, W. BARZ. 1985. Differential turnover of isoflavone 7–0-glucoside-6″-0-malonates in deer arietinum roots. Phytochemistry 24: 949–951.

    Article  Google Scholar 

  103. MOESTA, P., H. GRISEBACH. 1982. L-2-Aminooxy-3-phenylpropionic acid inhibits phytoalexin accumulation in soybean with concomitant loss of resistance against Phytophthora megasperma f. sp. glycinea. Physiol. Plant Pathol. 21: 65–70.

    Article  CAS  Google Scholar 

  104. BARNES, L., R.L. JONES. 1984. Regulation of phenylalanine ammonia-lyase activity and growth in lettuce by light and gibberellic acid. Plant Cell Environ. 7: 89–95.

    Article  CAS  Google Scholar 

  105. AMRHEIN, N., G. FRANK, G. LEMM, H.B. LUHMANN. 1983. Inhibition of lignin formation by L-α-aminooxy-β-phenylpropionic acid, an inhibitor of phenylalanine ammonia-lyase. Eur. J. Cell Biol. 29: 139–144.

    CAS  Google Scholar 

  106. SMART, C.C., N. AMRHEIN. 1985. The influence of lignification on the development of vascular tissue in Vigna radiata L. Protoplasma 124: 87–95.

    Article  CAS  Google Scholar 

  107. RAVEN, J.A. 1977. The evolution of vascular land plants in relation to supracellular transport processes. In Advances in Botanical Research. (W.H. Woolhouse, ed.), Vol. 5, London, Academic Press, pp. 153–219.

    Chapter  Google Scholar 

  108. GRAND, C., F. SARNI, A.M. BOUDET. 1985. Inhibition of cinnamyl alcohol dehydrogenase activity and lignin synthesis in poplar (Populus X euramericana Dode) tissues by two organic compounds. Planta 163: 232–237.

    Article  CAS  Google Scholar 

  109. DE-EKNAMKUL, W., B.E. ELLIS. 1985. Characterization of tyrosine aminotransferase, a key enzyme in rosmarinic acid formation in Anchusa officinalis cell cultures. Plant Physiol. 77: S112.

    Google Scholar 

  110. WILLIAMS, R., C. CHAPPLE, B.E. ELLIS. 1985. Characterization of tyrosine decarboxylase from Syringa vulgaris cell cultures. Plant Physiol. 77: S112.

    Google Scholar 

  111. HANSON, K.R., E.A. HAVIR, C. RESSLER. 1979. Phenylalanine ammonia-lyase: Enzymic conversion of 3-(1,4-cyclohexadienyl)-L-alanine to trans-3-(1,4-cyclohexadienyl)acrylic acid. Biochemistry 18: 1431–1438.

    Article  CAS  Google Scholar 

  112. BAYLIS, E.K., C.D. CAMPUBELL, J.G. DINGWALL. 1984. 1-Amino-alkylphosphonous acids. Part 1. Isosteres of the protein amino acids. J. Chem. Soc., Perkin Trans. I: 2845–2853.

    Article  Google Scholar 

  113. ELWOOD, J.K., R.M. HERBST, G.L. KILGOUR. 1965. Tetrazole analogues of glutamic acid. I. Reaction with glutamic dehydrogenase. J. Biol. Chem. 240: 2073–2076.

    CAS  Google Scholar 

  114. CHARI, R.V.J., J. WEMPLE. 1979. A simple, efficient synthesis of β-methylene phenylalanine. A new approach to the preparation of β,γ-unsaturated α-amino acid enzyme substrate analogs. Tetrahedron Lett. 111–114.

    Google Scholar 

  115. LEUKART, O., M. CAVIEZEL, A. EBERLE, E. ESCHER, A. TUN-KYI, R. SCHWYZER. L-o-Carboranylalanine, a boron analogue of phenylalanine. Helv. Chim. Acta 59: 2184–2187.

    Google Scholar 

  116. DO, K.Q., P. THANEI, M. CAVIEZEL, R. SCHWYZER. 1979. 98. The synthesis of (S)-(+)-2-amino-3-(l-adaman-tyl)-propionic acid (L-(+)-adamantylalanine, Ada) as a ffatf or ‘super’ analogue of leucine and phenylalanine. Helv. Chim. Acta 62: 956–964.

    Article  CAS  Google Scholar 

  117. RAY, T.B. 1984. Site of action of chlorsulfuron. Inhibition of valine and isoleucine biosynthesis in plants. Plant Physiol. 75: 827–831.

    Article  CAS  Google Scholar 

  118. LAROSSA, R.A., J.V. SCHLOSS. 1984. The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium. J. Biol. Chem. 259: 8753–8757.

    CAS  Google Scholar 

  119. WAUCHOPE, D. 1976. Acid dissociation constants of arsenic acid, methylarsonic acid (MAA), dimethyl-arsinic acid (cacodylic acid), and N-(phosphono-methyl)glycine (glyphosate). J. Agrie. Food Chem. 24: 717–721.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Amrhein, N. (1986). Specific Inhibitors as Probes into the Biosynthesis And Metabolism of Aromatic Amino Acids. In: Conn, E.E. (eds) The Shikimic Acid Pathway. Recent Advances in Phytochemistry, vol 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8056-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8056-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8058-0

  • Online ISBN: 978-1-4684-8056-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics