Skip to main content

Naturally Occurring Quinones as Bioreductive Alkylating Agents

  • Chapter
The Shikimic Acid Pathway

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 20))

Abstract

Bioreductive alkylation is the term used to describe the effect of those compounds which express their mode of biological action as alkylating agents, but do so subsequent to their reduction in vivo.1 That is, they are pro-drugs which are activated by a bioreduction. Quinones are a class of compounds ideally suited to function as the reducible moiety of bioreductive alkylating agents since their facile reduction in vivo and in vitro to the corresponding hydro-quinones is a well known and extensively studied reaction.2 If the quinone is further substituted with a side-chain bearing a leaving group X at the 1-position of the substituent, then quinonemethide formation can result by an elimination of HX from the hydroquinone.2,3 The reactive quinonemethide is suggested as the discrete alkylating agent and functions as such by a Michael addition of a biologically important nucleophile (Nu-:DNA, protein, carbohydrate, etc.) to the enone of the methide. This postulate is represented by the sequence of reactions outlined in Scheme . i.e., 1234.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. LIN, A.J., L.A. COSBY, C.W. SHANSKY, A.C. SARTORELLI. 1972. Potential bioreductive alkylating agents. 1. Benzoquinone derivatives. J. Med. Chem. 15: 1247.

    Article  CAS  Google Scholar 

  2. PATAI, S., ed. 1974. The Chemistry of the Quinonoid Compounds. Parts 1, 2, J. Wiley and Sons, Inc.

    Google Scholar 

  3. MORTON, R.A. 1965. Biochemistry of Quinones. Academic Press, New York and London.

    Google Scholar 

  4. TURNER, A.B. 1964. Quinone methides. Quart. Rev. Chem. (London) 18: 347.

    Article  CAS  Google Scholar 

  5. LIN, A.J., R.S. PARDINI, L.A. COSBY, B.J. LILLIS, C.W. SHANSKY, A.C. SARTORELLI. 1973. Potential bioreductive alkylating agents. 2. Antitumor effects and biochemical studies of naphthoquinone derivatives. J. Med. Chem. 16: 1268.

    Article  CAS  Google Scholar 

  6. LIN, A.J., C.W. SHANSKY, A.C. SARTORELLI. 1974. Potential bioreductive alkylating agents. 3. Synthesis and antineoplastic activity of acetoxymethyl and corresponding ethyl carbamate derivatives of benzo-quinones. J. Med. Chem. 17: 558.

    Article  CAS  Google Scholar 

  7. LIN, A.J., B.J. LILLIS, A.C. SARTORELLI. 1975. Potential bioreductive alkylating agents. 5. Antineoplastic activity of quinoline-5,8-dione, naphtha-zarine and naphthoquinones. J. Med. Chem. 18: 917.

    Article  CAS  Google Scholar 

  8. LIN, A.J., A.C. SARTORELLI. 1976. Potential bioreductive alkylating agents. 7. Antitumor effects of phenyl-substituted 2-chloromethyl-3-phenyl-1,4-naphthoquinones. J. Med. Chem. 19: 1336.

    Article  CAS  Google Scholar 

  9. LIN, A.J., A.C. SARTORELLI. 1973. 2,3-Dimethyl-5,6-bis(methylene)-l,4-benzoquinone. The active intermediate of bioreductive alkylating agents. J. Org. Chem. 38: 813.

    Article  CAS  Google Scholar 

  10. KENNEDY, K.A., B.A. TEICHER, S. ROCKWELL, A.C. SARTORELLI. 1980. The hypoxic tumor cells: a target for selective cancer chemotherapy. Biochem. Pharmacol. 29: 1

    Article  CAS  Google Scholar 

  11. KENNEDY, K.A., S. ROCKWELL, A.C. SARTORELLI. 1980. Preferential activation of mitomycin C to cytotoxic metabolites by hypoxic tumor cells. Cancer Res. 40: 2356.

    CAS  Google Scholar 

  12. IYER, V.N., W. SZYBALSKI. 1964. Mitomycins and porfiromycin-mechanism of activation and cross-linking of deoxyribonucleic acid. Science 145: 55.

    Article  CAS  Google Scholar 

  13. MOORE, H.W., R. CZERNIAK. 1981. Naturally occurring quinones as potential bioreductive alkylating agents. Med. Res. Rev. 1: 249.

    Article  CAS  Google Scholar 

  14. KELLER, P.J., J.F. KOZLOWSKI, U. HORNEMANN. 1979. Formation of l-ethylxanthyl-2,7-diaminomitosen and 1,10-diethylxanthyl-2,8-diaminodecarbamoylmitosene in aqueous solution upon reduction-reoxidation of mitomycin C in the presence of potassium ethyl-xanthate. J. Am. Chem. Soc. 101: 7121.

    Article  Google Scholar 

  15. HASHIMOTO, Y., K. SHUDO, T. OKAMOTO. 1980. Acylation of 5-guanylic acid by reductively activated mitomycin C. Chem. Pharm. Bull. 28: 1961.

    Article  CAS  Google Scholar 

  16. HASHIMOTO, Y., K. SHUDO, T. OKAMOTO. 1983. Modification of deoxyribonucleic acid with reductivity activated mitomycin C. Chem. Pharm. Bull. 31: 861.

    Article  CAS  Google Scholar 

  17. PERRY, S. 1974. Summary and general discussion. Cancer, Chemother. Rep. Part 1 58: 117.

    Google Scholar 

  18. PIGRAM, W.J., W. FULLER, L.D. HAMILTON. 1972. Stereo-chemistry of intercalation: intercalation of dauno-mycin with DNA. Nature, New Biol. 235: 17.

    Article  CAS  Google Scholar 

  19. SINHA, B.K., C.F. CHIGNELL. 1979. Binding mode of chemically activated semiquinone free radicals from quinone anticancer agents to DNA. Chem.-Biol. Interact. 28: 301.

    Article  CAS  Google Scholar 

  20. SMITH, T.H., A.N. FUJIWARA, D.W. HENRY, W.W. LEE. 1976. Synthetic approaches to adriamycin. Degradation of daunorubicin of nonasymmetric tetracycline retone and refunctionalization of a ring to adria-mycine. J. Am. Chem. Soc. 98: 1969.

    Article  CAS  Google Scholar 

  21. KLEYER, D.L., T.H. KOCH. 1983. Spectroscopic observation of the tautomer of 7-deoxydaunomycinone from elimination of daunosamine from daunomycin hydro-quinone. J. Am. Chem. Soc. 105: 2504.

    Article  CAS  Google Scholar 

  22. KLEYER, D.L., T.H. KOCH. 1983. Electrophilic trap-ping of the tautomer of 7-deoxydaunomycinone. A possible mechanism for covalent binding of daunomycin to DNA. J. Am. Chem. Soc. 105: 5154.

    Article  CAS  Google Scholar 

  23. RAMAKRISHNAN, K., J. FISHER. 1983. Nucleophilic trapping of 7,11-di-deoxyanthracyclinone quinone methide. J. Am. Chem. Soc. 105: 7187.

    Article  CAS  Google Scholar 

  24. KLEYER, D.L., G. GAUDIANO, T.H. KOCH. 1984. Spectro-scopic and kinetic evidence for the tautomer of 7-deoxyaklavinone as an intermediate in the reductive coupling of aclacinomycin A. J. Am. Chem. Soc. 106: 1105.

    Article  CAS  Google Scholar 

  25. KARLSSON, J.O., N.V. NGUYEN, L.D. FOLAND, H.W. MOORE. 1985. (2-Alkynylethenyl)ketenes. A new benzoqui-none synthesis. J. Am. Chem. Soc. (in press).

    Google Scholar 

  26. MARVELL, E.N. 1980. Thermal Electrocyclic Reactions. Academic Press, New York, pp. 124–190.

    Google Scholar 

  27. JACKSON, D.A., M. REY, A.S. DREIDING. 1983. Preparation of 2-vinylcyclobutanones and their conversion to cyclopentenones. Tetrahedron Lett., 4817.

    Google Scholar 

  28. BERGE, J.M., M. REY, A.S. DREIDING. 1982. Addition of vinylketenes to enamines. A method for the preparation of 6,6-dialkylcyclohexa-2,4-dienones and 4,4-dialkylcyclobutenones. Helv. Chim. Acta 65: 2230.

    Article  CAS  Google Scholar 

  29. DANHEISER, R.L., S.K. GEE, H. SARD. 1982. A [4+4] annulation approach to eight-membered carbocyclic compounds. J. Am. Chem. Soc. 104: 7670.

    Article  CAS  Google Scholar 

  30. HUSTON, R., M. REY, A.S. DREIDING. 1982. Vinylketenes as synthons for bicyclo[4.2.1] nonadienones. Helv. Chim. Acta 65: 451.

    Article  CAS  Google Scholar 

  31. DöTZ, K.H., B. TRENKLE, U. SCHUBERT. 1981. Addition to ynamines to vinylketenes. Angew. Chem. 93: 296.

    Article  Google Scholar 

  32. DANHEISER, R.L., H. SARD. 1980. (Trimethylsilyl) vinylketene. A stable vinylketene and reactive enophile in [42]cycloadditions. J. Org. Chem. 45: 4810.

    Article  CAS  Google Scholar 

  33. DANHEISER, R.L., H. GEE. 1984. A regiocontrolled annulation approach to highly substituted aromatic compounds. J. Org. Chem. 49: 1674.

    Article  Google Scholar 

  34. NGUYEN, N.V., K. CHOW, J.O. KARLSSON, H.W. MOORE. 1985. Chemistry of azidoquinones. Conversion of 3-azido-5-alkynyl-1–2-benzoquinones to cyanophenols via (2-alkynylethenyl)ketenes. J. Am. Chem. Soc. (submitted for publication).

    Google Scholar 

  35. MOORE, H.W. 1979. Zwittazido cleavage. Acc Chem. Res. 12: 125.

    Article  CAS  Google Scholar 

  36. NGUYEN, N.V., H.W. MOORE. 1984. In situ generation and reactions of hexynylcyanoketene. J. Chem. Soc., Chem. Commun., 1066.

    Google Scholar 

  37. HAMDAN, A.J., H.W. MOORE. 1985. A novel synthetic route to heterocyclic quinones. J. Org. Chem. (in press).

    Google Scholar 

  38. SMITH, L.I., E.W. KAISER. 1940. The reaction between quinones and metallic enolates. XI. Duroquinone and enolates of cyanoacetic ester and β-diketones. J. Am. Chem. Soc. 62: 138.

    Article  CAS  Google Scholar 

  39. JURD, L. 1978. Quinones and quinone methides III. A novel side-chain amination reaction of Z-(l-phenylethyl)-1,4-benzoquinones. Aust. J. Chem. 31: 347.

    Article  CAS  Google Scholar 

  40. MOORE, H.W., H.R. SHELDEN. 1968. Rearrangements of azidoquinones. Reaction of thymoquinone and 2,5-dimethyl-1,4-benzoquinone with sodium azide in trichloroacetic acid. J. Org. Chem. 33: 4019.

    Article  CAS  Google Scholar 

  41. ODA, K., T. OHMUMA, Y. BAN. 1984. A facile removal of the arenesulfonyl group by electrochemical reduction of sulfonamides in a new cooperative system of anthracene and ascorbic acid: the control of criss-cross annulation. J. Org. Chem. 49: 953.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Moore, H.W., Karlsson, J.O. (1986). Naturally Occurring Quinones as Bioreductive Alkylating Agents. In: Conn, E.E. (eds) The Shikimic Acid Pathway. Recent Advances in Phytochemistry, vol 20. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8056-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8056-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8058-0

  • Online ISBN: 978-1-4684-8056-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics